Étude asymptotique et pratique du comportement de deux tests de détection de rupture

Dariush Ghorbanzadeh; Dominique Picard

Statistique et analyse des données (1991)

  • Volume: 16, Issue: 3, page 63-84
  • ISSN: 0750-7364

How to cite

top

Ghorbanzadeh, Dariush, and Picard, Dominique. "Étude asymptotique et pratique du comportement de deux tests de détection de rupture." Statistique et analyse des données 16.3 (1991): 63-84. <http://eudml.org/doc/109020>.

@article{Ghorbanzadeh1991,
author = {Ghorbanzadeh, Dariush, Picard, Dominique},
journal = {Statistique et analyse des données},
language = {fre},
number = {3},
pages = {63-84},
publisher = {Association pour la statistique et ses illustrations},
title = {Étude asymptotique et pratique du comportement de deux tests de détection de rupture},
url = {http://eudml.org/doc/109020},
volume = {16},
year = {1991},
}

TY - JOUR
AU - Ghorbanzadeh, Dariush
AU - Picard, Dominique
TI - Étude asymptotique et pratique du comportement de deux tests de détection de rupture
JO - Statistique et analyse des données
PY - 1991
PB - Association pour la statistique et ses illustrations
VL - 16
IS - 3
SP - 63
EP - 84
LA - fre
UR - http://eudml.org/doc/109020
ER -

References

top
  1. [1] Barndorff-Nielsen, O. (1963). On the limit behavior of extreme order statistics. Ann of Stat. 34 pp 992-1002. Zbl0119.15004MR150889
  2. [2] Bhattacharya, P.K & Fierson, D. JR (1981). A non parametric control chart for detecting disorders.Ann of Stat. 9. pp 544-554 Zbl0503.62077MR615430
  3. [3] Bhattacharya, R.N. & Waymire, E.C. (1990) Stochastic Processes with Applications .Wiley. MR1054645
  4. [4] Bhattacharya, G.K. & Johnson, R.A.(1968). Non parametric tests for shifts at an unknown time point. Ann Math.Stat. 39 pp 1731-1743 Zbl0167.47203MR230425
  5. [5] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. Zbl0944.60003MR233396
  6. [6] Billingsley, P. (1979). Probability and Measure. Wiley, New York. Zbl0649.60001MR534323
  7. [7] Chernoff, H. & Zacks, S (1964). Estimating the current mean of a normal distribution which is subjected to change in time. Ann. Math. Stat. 35 pp 999-1018. Zbl0218.62033MR179874
  8. [9] Cobb, G.W. (1978). The problem of the Nile: Conditional solution to a changepoint problem. Biometrika, 65, 2, pp. 243-251. Zbl0394.62074MR513930
  9. [10] Csörgö, M. & Horvàth, L (1988). Nonparametric Methods for changepoint problems. Handbook of Statistic,Vol.7. pp 403-425. 
  10. [11] Deshayes, J. & Picard, D. (1986) Off line Statistical ananlysis of change-point models using non parametric and likelihood methods. Lecture Notes on Information and Control. Sringer verlag. 
  11. [12] Gardner, L.A. Jr. (1969). On detecting changes in the mean of normal variates. Ann.Math.Stat. 40. pp 114-115. Zbl0184.22202MR243666
  12. [13] Ghorbanzadeh, D. (1991). Ruptures dans les modèles non paramétriques Applications et Tests. Séminaire 90-91. PARIS V. pp 195-210. 
  13. [14] Hajek, J. (1968) Asymptotic normality of simple linear rank statistics under alternatives. Ann Math Stat. 39. pp 325-346. Zbl0187.16401MR222988
  14. [15] Hajek, J & Sidak, Z. (1967). Theory of Rank. Academic, New York. Zbl0161.38102
  15. [16] Hinkley, D.V. & Hinkley, E.A. (1970) Inference about the change point in a sequence of binomial variables. Biometrika, 57, 2, pp.477-488. Zbl0214.46603MR275556
  16. [17] Kander, A. & Zacks, S. (1966). Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points. Ann Math Stat. 37. pp 1196-1210. Zbl0143.41002MR202242
  17. [18] Longini, I.M. (1990). Modeling the Decline of CD4+ ,T-Lymphocyte Counts in HEV-Infected Indiviuals. Journal of Acquired Immune Deficiency Syndromes, Vol.3, N° 9. 
  18. [19] Manon, R. & Reynolds, JR. (1975). A sequential Signed Rank Test for symmetry. Ann of Stat 2. pp 382-400. Zbl0325.62050MR359210
  19. [20] Picard, D. (1985). Testing and estimating change-point in time series. Advances in Appl. Prob. 17. pp 841-867. Zbl0585.62151MR809433
  20. [21] Roussas, G. (1972). Contiguity of Probability measure. Combrige University press. Zbl0265.60003MR359099
  21. [22] Sen, A. & Srivastava, M.S. (1975). On tests for detecting change in mean. Ann of Stat. 3 pp 90-108. Zbl0305.62014MR362649
  22. [23] Shorac, G.R. & Wellner, J.A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. Zbl1170.62365MR838963
  23. [24] Williams, D. (1979). Diffusions, Markov processes and Martingales. Vol.l, Wiley, New York. Zbl0826.60002MR531031
  24. [25] Worsley, K.J. (1986). Confidence regions and tests for a change point in a sequence of exponential family variables. Biometrika, 73, pp.91-104. Zbl0589.62016MR836437
  25. [26] Zacks, S. (1982). Fixed sample and sequential procedures. Statistique et Analyse des Données, pp.48-81. Zbl0511.62091MR677278

NotesEmbed ?

top

You must be logged in to post comments.