Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures

S. Zacks

Statistique et analyse des données (1982)

  • Volume: 7, Issue: 1, page 48-81
  • ISSN: 0750-7364

How to cite

top

Zacks, S.. "Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures." Statistique et analyse des données 7.1 (1982): 48-81. <http://eudml.org/doc/108882>.

@article{Zacks1982,
author = {Zacks, S.},
journal = {Statistique et analyse des données},
keywords = {change-point problem; review; quality control; switching regression; inventory; queuing; fixed sample procedures; extensive bibliography},
language = {eng},
number = {1},
pages = {48-81},
publisher = {Association pour la statistique et ses illustrations},
title = {Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures},
url = {http://eudml.org/doc/108882},
volume = {7},
year = {1982},
}

TY - JOUR
AU - Zacks, S.
TI - Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures
JO - Statistique et analyse des données
PY - 1982
PB - Association pour la statistique et ses illustrations
VL - 7
IS - 1
SP - 48
EP - 81
LA - eng
KW - change-point problem; review; quality control; switching regression; inventory; queuing; fixed sample procedures; extensive bibliography
UR - http://eudml.org/doc/108882
ER -

References

top
  1. [1] BAGSHAW, M. and JOHNSON, R.A. (1975) The influence of reference values and estimated variance on the ARL of CUSUM tests. J.R.S.S., B, 37, 413-420. Zbl0322.62099MR395124
  2. [2] BAGSHAW, M. and JOHNSON, R.A. (1975) Sequential detection of a drift change in a Wiener process. Commu. Statist. 4, 787-796. Zbl0318.62073MR403112
  3. [3] BAGSHAW, M. and JOHNSON, R.A. (1975) The effect of serial correlation on the performance of CUSUM tests II. - Technometrics, 17, 73-80. Zbl0277.62069MR373102
  4. [4] BALMER, D.W. (1975) On a quickest detection problem with costly information. J. Appl. Prob., 12, 87-97. Zbl0307.93045MR431582
  5. [5] BALMER, D.W. (1981) On quickest detection problem with variable monitoring. J. Appl. Prob., 18, 760-767. Zbl0366.60062MR431583
  6. [6] BARNARD, G.A. (1959) Control charts and stochastic processes. J. Roy. Statist. Soc. B, 21, 239-271. Zbl0089.35102
  7. [7] BATHER, J.A. (1967) On a quickest detection problem. Ann. Math. Statist., 38, 711-724. Zbl0168.17701MR211802
  8. [8] BATHER, J.A. (1976) A control chart model and a generalized stopping problem for Brownian motion. Math. Oper. Res., 1, 209-224. Zbl0368.62093MR445746
  9. [9] BHATTACHARYYA, G.K. and JOHNSON, R.A. (1968) Non-parametric tests for shift at an unknown time point. Ann. Math. Statist., 39, 1731-1743. Zbl0167.47203MR230425
  10. [10] BROEMELING, L. (1974) Estimating the future values of changing sequences. Commu. Statist., A, 6, 87-102. Zbl0361.62082
  11. [11] BROEMELING, L.D. (1974) Bayesian inferences about a changing sequence of random variables. Commun. Statist., 3, 234-255. Zbl0274.62026MR345289
  12. [12] BROWN, R.L., DURBIN, J. and EVANS, J.M. (1975) Techniques for testing the constancy of regression relationships over time. J. Royal Statist. Soc, B 37, 149-192. Zbl0321.62063MR378310
  13. [13] BROWN, R.L. and DURBIN, J. (1968) Methods of investigating whether a regression relationship is constant over time. Selected Statistical Papers I. Amsterdam : Math. Centrum, European Meeting, 37-45. Zbl0181.22102
  14. [14] CHERNOFF, H. and ZACKS, S. (1964) Estimating the current mean of a normal distribution which is subjected to changes in time. Ann. Math. Statist., 35, 999-1028. Zbl0218.62033MR179874
  15. [15] COOB, G.W. (1978) The problem of the Nile : conditional solution to a change point problem. Biometrika, 62, 243-251. Zbl0394.62074
  16. [16] DARKHOVSHK, B.S. (1976) A non-parametric method for the a posteriori detection of the "disorder" time of a sequence of independent random variables. Theory of Prob. Appl., 21, 178-183. Zbl0397.62024
  17. [17] EL-SAYYAD, G.M. (1975) A Bayesian analysis of the change-point problem. Egypt. Statist.J., 19, 1-13. 
  18. [18] FARLEY, J.U. and HINICH, M.J. (1970) Detecting "small" mean shifts in time series. Management Science, 17, 189-199. Zbl0203.50803
  19. [19] FERRIERA, P.E. (1975) A Bayesian analysis of switching regression model: Known number of regimes. J. Amer. Statist. Assoc., 70, 370-374. Zbl0319.62046
  20. [20] FISZ, M. (1963) Probability Theory and Mathematical Statistics. 3rd Edition. John Wiley and Sons, New-York. Zbl0478.60003MR164358
  21. [21] GARDNER, L.A. Jr. (1969) On detecting changes in the mean of normal variates. Ann. Math. Statist., 40, 114-115. Zbl0184.22202MR243666
  22. [22] GIRSHICK, M.A. and RUBIN, H. (1952) A Bayes appoach to a quality control model. Ann. Math. Statist. 23, 114-115. Zbl0046.35405MR47291
  23. [23] HAWKINS, D.M. (1977) Testing a sequence of observations for a shift in location. J. Amer. Statist. Assoc., 72, 180-186. Zbl0346.62027MR451496
  24. [24] HAWKINS, D.M. (1980) A note on continuous and discontinuous segmented regression. Technometrics, 22, 443-444. Zbl0455.62053
  25. [25] HINES, W.G.S. (1976) A simple monitor of a system with sudden parameter changes. IEEE Trans. Inf. Theory, IT, 210-216. Zbl0321.60035
  26. [26] HINKLEY, D.V. and HINKLEY, E.A. (1970) Inference about the change-point in a sequence of Binomial random variables. Biometrika, 57, 477-488. Zbl0214.46603MR275556
  27. [27] HINKLEY, D.V. (1969) Inference about the intersection in two-phase regression. Biometrika, 56, 495-504. Zbl0183.48505
  28. [28] HINKLEY, D.V. (1970) Inference about the change-point in a sequence of random variables. Biometrika, 57, 1-16. Zbl0198.51501MR273727
  29. [29] HINKLEY, D.V. (1971) Inference in two phase regression. J. Amer. Statist. Assoc., 66, 736-743. Zbl0226.62068
  30. [30] HINKLEY, D.V. (1971) Inference about the change-point from a cumulative sum tests. Biometrika, 58, 509-523. Zbl0254.62019MR312623
  31. [31] HINKLEY, D.V. (1972) Time-ordered classification. Biometrika, 59, 509-523. Zbl0269.62056MR368317
  32. [32] HOLBERT, D. and BROEMELING, L. (1977) Bayesian inferences related to shifting sequences and two-hase regression. Commun. Statist. A, 6, 265-275. Zbl0355.62056MR436433
  33. [33] HSU, D.A. (1977) Tests for variance shift at an unknown time point. Applied Statist., 26, 279-284. 
  34. [34] HSU, D.A. (1979) Detecting shifts of parameter in Gamma sequences with applications to stock price and air traffic flow analysis. J. Amer. Statist. Asso., 74, 31-40. 
  35. [35] INSELMANN, E.H. and ARSENAL, F. (1968) Tests for several regression equations. Ann. Math. Statist., 39, 1362. 
  36. [36] KANDER, A. and ZACKS, S. (1966) Test procedures for possible changes in parameters of statistic at distributions occuring at unknown time points. Ann. Math. Statist., 37, 1196-1210. Zbl0143.41002MR202242
  37. [37] KHAN, R.A. (1975) A sequential detection procedure. Tech. Rep. n° 17, Départ. of Statistics, CWRU. 
  38. [38] KHAN, R.A. (1979) Some first passage problems related to CUSUM procedures. Stoch. Proc Appl., 9, 207-216. Zbl0436.62065MR548840
  39. [39] LAI, T.L. (1973) Gaussian processes, moving averages and quickest detection problems. Ann. Prob., 1, 825-837. Zbl0294.60028MR365679
  40. [40] LAI, T.L. (1974) Control charts based on weighted sums. Ann. Statist. 2, 134-147. Zbl0288.62043MR353604
  41. [41] LEE, A.F.S. and HEGHINIAN, S.M. (1977) A shift of the mean level in a sequence of independent normal random variables - a Bayesian approach. Technometrics, 19, 503-506. Zbl0369.62033MR471158
  42. [42] LORDEN, G. and EISENBERG, I. (1973) Detection of failure rate increases. Technometrics, 15, 167-175. Zbl0275.62082
  43. [43] LORDEN, G. (1971) Procedures for reacting to a change in distribution. Ann. Math. Statist., 42, 1897-1908. Zbl0255.62067MR309251
  44. [44] MARONNA, R. and YOHAI, V.J. (1978) A bivariate test for the dectection of a systematic change in mean. J. Amer. Statist. Assoc., 73, 640-645. Zbl0387.62048MR514168
  45. [45] MUSTAFI, C.K. (1968) Inference problems about parameters which are subjected to changes over time. Ann. Math. Statist., 39, 840-854. Zbl0165.21102MR226808
  46. [46] NADLER, J. and ROBBINS, N.D. (1971) Some characteristics of Page's two sided procedure for detecting a change in the location parameter. Ann. Math. Statist., 42, 538-551. Zbl0217.51501MR288905
  47. [47] PAGE, E.S. (1954) Continuous inspection schemes. Biometrika 41, 100-115. Zbl0056.38002MR88850
  48. [48] PAGE, E.S. (1955) A test for a change in a parameter occuring at an unknown point. Biometrika, 42, 523-526. Zbl0067.11602MR72412
  49. [49] PAGE, E.S. (1957) On problem in which a change in a parameter occurs at an unknown point. Biometrika, 44, 248-252. Zbl0083.14705
  50. [50] PETTITT, A.N. (1979) A non parametric approach to the change-point problem. Appl. Statist., 28, 126-135. Zbl0438.62037MR539082
  51. [51] QUANDT, R.E. (1958) The estimation of the parameters of a linear regression system obeys two separate regimes. J. Amer. Statis. Assoc. Zbl0116.37304MR100314
  52. [52] QUANDT, R.E. (1960) Tests of the hypothesis that a linear regression System obeys two separate regimes. J. Amer. Statist. Assoc., 55, 324-330. Zbl0095.13602MR114269
  53. [53] RAO, P.S.E.S. (1972) On two phase regression estimator. Sankhya, 34, 473-476. Zbl0269.62009MR336865
  54. [54] SCHWEDER, T. (1976) Some 'optimal' methods to detect structural shift or outliers in regression. J. Amer. Statist. Assoc., 71, 491-501. Zbl0361.62058MR426303
  55. [55] SEN, A. and SRIVASTAVE, M. (1975) On tests for detecting change in the mean when variance is unknown. Ann. Inst. Statist. Math., 27, 593-602. Zbl0399.62033MR415864
  56. [56] SEN, A. and SRIVASTAVA, M.S. (1975) On tests for detecting changes in means. Annals of Statist., 3, 98-108. Zbl0305.62014MR362649
  57. [57] Sen, A. and SRIVASTAVA, M.S. (1975) On one sided tests for change in level. Technometrics, 17, 61-64. Zbl0294.62023
  58. [58] SEN, A.K. and SRIVASTAVA, M.S. (1973) On multivariate tests for detecting change in mean. Sankhya, 35, 173-186. Zbl0281.62039MR331653
  59. [59] SHABAN, S.A. (1980) Change point problem and two-hase regression : an annotated bibliography. Inst. Statist. Review, 48, 83-93. Zbl0432.62050MR576777
  60. [60] SHIRYAEV, A.N. (1973) On optimum methods in quickest detection problems. Theory Prob. Appl., 8, 22-46. Zbl0213.43804
  61. [61] SHIRYAEV, A.N. (1973) Statistical Sequential Analysis: Optimal Stopping Rules. Translations of Mathematical Monographs, Vol. 38, American Mathematical Society, Providence RI. Zbl0267.62039MR350990
  62. [62] SMITH, A.F.M. (1975) A Bayesian approach to inference about change-point in sequence of random variables. Biometrika, 62, 407-43 6. Zbl0321.62041MR381115
  63. [63] SMITH, A.F.M. (1977) A Bayesian analysis of some time varying models. Recent Developments in Statistics, J.R. Barra, et.al., Editors, North Holland, New York. Zbl0366.62103MR501550
  64. [64] SWAMY, P.A.V.B. and MEHTA, J.S. (1975) Bayesian and non-Bayesian analysis of switching regressions and of random coefficient regression. J. Amer. Statist. Assoc., 70, 593-602. Zbl0308.62061MR397971
  65. [65] TSURUMI, H. (1977) A Bayesian test of a parameter shift and an application. Jour. of Econometrics, 6, 371-380. Zbl0371.62041
  66. [66] VON MISES, R. (1964) Mathematical Theory of Probability and Statistics Academic Press, New York. Zbl0132.12303MR178486
  67. [67] WHICHERN, D.W., MILLER, R.B. and HSU D.A. (1976) Change of variance in first-order autoregressive time series models with an application. Appl. Statist. 25, 248-256. 
  68. [68] ZACKS, S. and YADIN, M. (1978) Adaptation of the service capacity in a queueing System which is subjected to a change in the arrival rate... Adv. Appl. Prob., 10, 666-681. Zbl0381.60085MR494566
  69. [69] ZACKS, S. and BARZILY, Z. (1981) Detecting a shift in the probability of success in a sequence of Bernouilli trials. J. Statist. Planning and Inf., 5, 107-119. Zbl0484.62009MR627235
  70. [70] ZACKS, S. (1981) Parametric Statistical Inference : Basic Theory and Modern Approaches. Pergamon Press, Oxford. Zbl0452.62020MR611156
  71. [71] ZACKS, S. (1981) The probability distribution and the expected value of a stopping variable associated with one-sided CUSUM procedures... Commum. Statist., A, 10, 2245-2258. Zbl0482.60046MR629900

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.