Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures
Statistique et analyse des données (1982)
- Volume: 7, Issue: 1, page 48-81
- ISSN: 0750-7364
Access Full Article
topHow to cite
topZacks, S.. "Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures." Statistique et analyse des données 7.1 (1982): 48-81. <http://eudml.org/doc/108882>.
@article{Zacks1982,
author = {Zacks, S.},
journal = {Statistique et analyse des données},
keywords = {change-point problem; review; quality control; switching regression; inventory; queuing; fixed sample procedures; extensive bibliography},
language = {eng},
number = {1},
pages = {48-81},
publisher = {Association pour la statistique et ses illustrations},
title = {Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures},
url = {http://eudml.org/doc/108882},
volume = {7},
year = {1982},
}
TY - JOUR
AU - Zacks, S.
TI - Classical and bayesian approaches to the change-point problem : fixed sample and sequential procedures
JO - Statistique et analyse des données
PY - 1982
PB - Association pour la statistique et ses illustrations
VL - 7
IS - 1
SP - 48
EP - 81
LA - eng
KW - change-point problem; review; quality control; switching regression; inventory; queuing; fixed sample procedures; extensive bibliography
UR - http://eudml.org/doc/108882
ER -
References
top- [1] BAGSHAW, M. and JOHNSON, R.A. (1975) The influence of reference values and estimated variance on the ARL of CUSUM tests. J.R.S.S., B, 37, 413-420. Zbl0322.62099MR395124
- [2] BAGSHAW, M. and JOHNSON, R.A. (1975) Sequential detection of a drift change in a Wiener process. Commu. Statist. 4, 787-796. Zbl0318.62073MR403112
- [3] BAGSHAW, M. and JOHNSON, R.A. (1975) The effect of serial correlation on the performance of CUSUM tests II. - Technometrics, 17, 73-80. Zbl0277.62069MR373102
- [4] BALMER, D.W. (1975) On a quickest detection problem with costly information. J. Appl. Prob., 12, 87-97. Zbl0307.93045MR431582
- [5] BALMER, D.W. (1981) On quickest detection problem with variable monitoring. J. Appl. Prob., 18, 760-767. Zbl0366.60062MR431583
- [6] BARNARD, G.A. (1959) Control charts and stochastic processes. J. Roy. Statist. Soc. B, 21, 239-271. Zbl0089.35102
- [7] BATHER, J.A. (1967) On a quickest detection problem. Ann. Math. Statist., 38, 711-724. Zbl0168.17701MR211802
- [8] BATHER, J.A. (1976) A control chart model and a generalized stopping problem for Brownian motion. Math. Oper. Res., 1, 209-224. Zbl0368.62093MR445746
- [9] BHATTACHARYYA, G.K. and JOHNSON, R.A. (1968) Non-parametric tests for shift at an unknown time point. Ann. Math. Statist., 39, 1731-1743. Zbl0167.47203MR230425
- [10] BROEMELING, L. (1974) Estimating the future values of changing sequences. Commu. Statist., A, 6, 87-102. Zbl0361.62082
- [11] BROEMELING, L.D. (1974) Bayesian inferences about a changing sequence of random variables. Commun. Statist., 3, 234-255. Zbl0274.62026MR345289
- [12] BROWN, R.L., DURBIN, J. and EVANS, J.M. (1975) Techniques for testing the constancy of regression relationships over time. J. Royal Statist. Soc, B 37, 149-192. Zbl0321.62063MR378310
- [13] BROWN, R.L. and DURBIN, J. (1968) Methods of investigating whether a regression relationship is constant over time. Selected Statistical Papers I. Amsterdam : Math. Centrum, European Meeting, 37-45. Zbl0181.22102
- [14] CHERNOFF, H. and ZACKS, S. (1964) Estimating the current mean of a normal distribution which is subjected to changes in time. Ann. Math. Statist., 35, 999-1028. Zbl0218.62033MR179874
- [15] COOB, G.W. (1978) The problem of the Nile : conditional solution to a change point problem. Biometrika, 62, 243-251. Zbl0394.62074
- [16] DARKHOVSHK, B.S. (1976) A non-parametric method for the a posteriori detection of the "disorder" time of a sequence of independent random variables. Theory of Prob. Appl., 21, 178-183. Zbl0397.62024
- [17] EL-SAYYAD, G.M. (1975) A Bayesian analysis of the change-point problem. Egypt. Statist.J., 19, 1-13.
- [18] FARLEY, J.U. and HINICH, M.J. (1970) Detecting "small" mean shifts in time series. Management Science, 17, 189-199. Zbl0203.50803
- [19] FERRIERA, P.E. (1975) A Bayesian analysis of switching regression model: Known number of regimes. J. Amer. Statist. Assoc., 70, 370-374. Zbl0319.62046
- [20] FISZ, M. (1963) Probability Theory and Mathematical Statistics. 3rd Edition. John Wiley and Sons, New-York. Zbl0478.60003MR164358
- [21] GARDNER, L.A. Jr. (1969) On detecting changes in the mean of normal variates. Ann. Math. Statist., 40, 114-115. Zbl0184.22202MR243666
- [22] GIRSHICK, M.A. and RUBIN, H. (1952) A Bayes appoach to a quality control model. Ann. Math. Statist. 23, 114-115. Zbl0046.35405MR47291
- [23] HAWKINS, D.M. (1977) Testing a sequence of observations for a shift in location. J. Amer. Statist. Assoc., 72, 180-186. Zbl0346.62027MR451496
- [24] HAWKINS, D.M. (1980) A note on continuous and discontinuous segmented regression. Technometrics, 22, 443-444. Zbl0455.62053
- [25] HINES, W.G.S. (1976) A simple monitor of a system with sudden parameter changes. IEEE Trans. Inf. Theory, IT, 210-216. Zbl0321.60035
- [26] HINKLEY, D.V. and HINKLEY, E.A. (1970) Inference about the change-point in a sequence of Binomial random variables. Biometrika, 57, 477-488. Zbl0214.46603MR275556
- [27] HINKLEY, D.V. (1969) Inference about the intersection in two-phase regression. Biometrika, 56, 495-504. Zbl0183.48505
- [28] HINKLEY, D.V. (1970) Inference about the change-point in a sequence of random variables. Biometrika, 57, 1-16. Zbl0198.51501MR273727
- [29] HINKLEY, D.V. (1971) Inference in two phase regression. J. Amer. Statist. Assoc., 66, 736-743. Zbl0226.62068
- [30] HINKLEY, D.V. (1971) Inference about the change-point from a cumulative sum tests. Biometrika, 58, 509-523. Zbl0254.62019MR312623
- [31] HINKLEY, D.V. (1972) Time-ordered classification. Biometrika, 59, 509-523. Zbl0269.62056MR368317
- [32] HOLBERT, D. and BROEMELING, L. (1977) Bayesian inferences related to shifting sequences and two-hase regression. Commun. Statist. A, 6, 265-275. Zbl0355.62056MR436433
- [33] HSU, D.A. (1977) Tests for variance shift at an unknown time point. Applied Statist., 26, 279-284.
- [34] HSU, D.A. (1979) Detecting shifts of parameter in Gamma sequences with applications to stock price and air traffic flow analysis. J. Amer. Statist. Asso., 74, 31-40.
- [35] INSELMANN, E.H. and ARSENAL, F. (1968) Tests for several regression equations. Ann. Math. Statist., 39, 1362.
- [36] KANDER, A. and ZACKS, S. (1966) Test procedures for possible changes in parameters of statistic at distributions occuring at unknown time points. Ann. Math. Statist., 37, 1196-1210. Zbl0143.41002MR202242
- [37] KHAN, R.A. (1975) A sequential detection procedure. Tech. Rep. n° 17, Départ. of Statistics, CWRU.
- [38] KHAN, R.A. (1979) Some first passage problems related to CUSUM procedures. Stoch. Proc Appl., 9, 207-216. Zbl0436.62065MR548840
- [39] LAI, T.L. (1973) Gaussian processes, moving averages and quickest detection problems. Ann. Prob., 1, 825-837. Zbl0294.60028MR365679
- [40] LAI, T.L. (1974) Control charts based on weighted sums. Ann. Statist. 2, 134-147. Zbl0288.62043MR353604
- [41] LEE, A.F.S. and HEGHINIAN, S.M. (1977) A shift of the mean level in a sequence of independent normal random variables - a Bayesian approach. Technometrics, 19, 503-506. Zbl0369.62033MR471158
- [42] LORDEN, G. and EISENBERG, I. (1973) Detection of failure rate increases. Technometrics, 15, 167-175. Zbl0275.62082
- [43] LORDEN, G. (1971) Procedures for reacting to a change in distribution. Ann. Math. Statist., 42, 1897-1908. Zbl0255.62067MR309251
- [44] MARONNA, R. and YOHAI, V.J. (1978) A bivariate test for the dectection of a systematic change in mean. J. Amer. Statist. Assoc., 73, 640-645. Zbl0387.62048MR514168
- [45] MUSTAFI, C.K. (1968) Inference problems about parameters which are subjected to changes over time. Ann. Math. Statist., 39, 840-854. Zbl0165.21102MR226808
- [46] NADLER, J. and ROBBINS, N.D. (1971) Some characteristics of Page's two sided procedure for detecting a change in the location parameter. Ann. Math. Statist., 42, 538-551. Zbl0217.51501MR288905
- [47] PAGE, E.S. (1954) Continuous inspection schemes. Biometrika 41, 100-115. Zbl0056.38002MR88850
- [48] PAGE, E.S. (1955) A test for a change in a parameter occuring at an unknown point. Biometrika, 42, 523-526. Zbl0067.11602MR72412
- [49] PAGE, E.S. (1957) On problem in which a change in a parameter occurs at an unknown point. Biometrika, 44, 248-252. Zbl0083.14705
- [50] PETTITT, A.N. (1979) A non parametric approach to the change-point problem. Appl. Statist., 28, 126-135. Zbl0438.62037MR539082
- [51] QUANDT, R.E. (1958) The estimation of the parameters of a linear regression system obeys two separate regimes. J. Amer. Statis. Assoc. Zbl0116.37304MR100314
- [52] QUANDT, R.E. (1960) Tests of the hypothesis that a linear regression System obeys two separate regimes. J. Amer. Statist. Assoc., 55, 324-330. Zbl0095.13602MR114269
- [53] RAO, P.S.E.S. (1972) On two phase regression estimator. Sankhya, 34, 473-476. Zbl0269.62009MR336865
- [54] SCHWEDER, T. (1976) Some 'optimal' methods to detect structural shift or outliers in regression. J. Amer. Statist. Assoc., 71, 491-501. Zbl0361.62058MR426303
- [55] SEN, A. and SRIVASTAVE, M. (1975) On tests for detecting change in the mean when variance is unknown. Ann. Inst. Statist. Math., 27, 593-602. Zbl0399.62033MR415864
- [56] SEN, A. and SRIVASTAVA, M.S. (1975) On tests for detecting changes in means. Annals of Statist., 3, 98-108. Zbl0305.62014MR362649
- [57] Sen, A. and SRIVASTAVA, M.S. (1975) On one sided tests for change in level. Technometrics, 17, 61-64. Zbl0294.62023
- [58] SEN, A.K. and SRIVASTAVA, M.S. (1973) On multivariate tests for detecting change in mean. Sankhya, 35, 173-186. Zbl0281.62039MR331653
- [59] SHABAN, S.A. (1980) Change point problem and two-hase regression : an annotated bibliography. Inst. Statist. Review, 48, 83-93. Zbl0432.62050MR576777
- [60] SHIRYAEV, A.N. (1973) On optimum methods in quickest detection problems. Theory Prob. Appl., 8, 22-46. Zbl0213.43804
- [61] SHIRYAEV, A.N. (1973) Statistical Sequential Analysis: Optimal Stopping Rules. Translations of Mathematical Monographs, Vol. 38, American Mathematical Society, Providence RI. Zbl0267.62039MR350990
- [62] SMITH, A.F.M. (1975) A Bayesian approach to inference about change-point in sequence of random variables. Biometrika, 62, 407-43 6. Zbl0321.62041MR381115
- [63] SMITH, A.F.M. (1977) A Bayesian analysis of some time varying models. Recent Developments in Statistics, J.R. Barra, et.al., Editors, North Holland, New York. Zbl0366.62103MR501550
- [64] SWAMY, P.A.V.B. and MEHTA, J.S. (1975) Bayesian and non-Bayesian analysis of switching regressions and of random coefficient regression. J. Amer. Statist. Assoc., 70, 593-602. Zbl0308.62061MR397971
- [65] TSURUMI, H. (1977) A Bayesian test of a parameter shift and an application. Jour. of Econometrics, 6, 371-380. Zbl0371.62041
- [66] VON MISES, R. (1964) Mathematical Theory of Probability and Statistics Academic Press, New York. Zbl0132.12303MR178486
- [67] WHICHERN, D.W., MILLER, R.B. and HSU D.A. (1976) Change of variance in first-order autoregressive time series models with an application. Appl. Statist. 25, 248-256.
- [68] ZACKS, S. and YADIN, M. (1978) Adaptation of the service capacity in a queueing System which is subjected to a change in the arrival rate... Adv. Appl. Prob., 10, 666-681. Zbl0381.60085MR494566
- [69] ZACKS, S. and BARZILY, Z. (1981) Detecting a shift in the probability of success in a sequence of Bernouilli trials. J. Statist. Planning and Inf., 5, 107-119. Zbl0484.62009MR627235
- [70] ZACKS, S. (1981) Parametric Statistical Inference : Basic Theory and Modern Approaches. Pergamon Press, Oxford. Zbl0452.62020MR611156
- [71] ZACKS, S. (1981) The probability distribution and the expected value of a stopping variable associated with one-sided CUSUM procedures... Commum. Statist., A, 10, 2245-2258. Zbl0482.60046MR629900
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.