On an arithmetic function considered by Pillai
Florian Luca[1]; Ravindranathan Thangadurai[2]
- [1] Mathematical Institute UNAM, Ap. Postal 61-3 (Xangari), CP 58089 Morelia, Michoacán, Mexico
- [2] Harish-Chandra Research Institute Chhatnag Road, Jhunsi Allahabad 211 019, India
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 695-701
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLuca, Florian, and Thangadurai, Ravindranathan. "On an arithmetic function considered by Pillai." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 695-701. <http://eudml.org/doc/10905>.
@article{Luca2009,
abstract = {For every positive integer $n$ let $p(n)$ be the largest prime number $p\le n$. Given a positive integer $n=n_1$, we study the positive integer $r=R(n)$ such that if we define recursively $n_\{i+1\}=n_i-p(n_i)$ for $i\ge 1$, then $n_r$ is a prime or $1$. We obtain upper bounds for $R(n)$ as well as an estimate for the set of $n$ whose $R(n)$ takes on a fixed value $k$.},
affiliation = {Mathematical Institute UNAM, Ap. Postal 61-3 (Xangari), CP 58089 Morelia, Michoacán, Mexico; Harish-Chandra Research Institute Chhatnag Road, Jhunsi Allahabad 211 019, India},
author = {Luca, Florian, Thangadurai, Ravindranathan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Pillai function; growth of arithmetic function},
language = {eng},
number = {3},
pages = {695-701},
publisher = {Université Bordeaux 1},
title = {On an arithmetic function considered by Pillai},
url = {http://eudml.org/doc/10905},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Luca, Florian
AU - Thangadurai, Ravindranathan
TI - On an arithmetic function considered by Pillai
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 695
EP - 701
AB - For every positive integer $n$ let $p(n)$ be the largest prime number $p\le n$. Given a positive integer $n=n_1$, we study the positive integer $r=R(n)$ such that if we define recursively $n_{i+1}=n_i-p(n_i)$ for $i\ge 1$, then $n_r$ is a prime or $1$. We obtain upper bounds for $R(n)$ as well as an estimate for the set of $n$ whose $R(n)$ takes on a fixed value $k$.
LA - eng
KW - Pillai function; growth of arithmetic function
UR - http://eudml.org/doc/10905
ER -
References
top- R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes - II. Proc. London Math. Soc., (3) 83 (2001), 532–562. Zbl1016.11037MR1851081
- H. Cramér, On the order of magnitude of the differences between consecutive prime numbers. Acta. Arith., 2 (1936), 396–403. Zbl0015.19702
- H. Halberstam and H. E. Rickert, Sieve methods. Academic Press, London, UK, 1974. Zbl0298.10026
- G. Hoheisel, Primzahlprobleme in der Analysis. Sitzunsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 33 (1930), 3–11.
- T. R. Nicely, Some Results of Computational Research in Prime Numbers. http://www.trnicely.net/
- S. S. Pillai, An arithmetical function concerning primes. Annamalai University J. (1930), 159–167.
- R. Sitaramachandra Rao, On an error term of Landau - II in “Number theory (Winnipeg, Man., 1983)”, Rocky Mountain J. Math. 15 (1985), 579–588. Zbl0584.10027MR823269
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.