A characterization of some q-multiplicative functions
Let , be a Cantor scale, the compact projective limit group of the groups , identified to , and let be its normalized Haar measure. To an element , of we associate the sequence of integral valued random variables . The main result of this article is that, given a complex -multiplicative function of modulus , we have
For infinite discrete additive semigroups we study normed algebras of arithmetic functions endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for . This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.
Si est le k nombre premier, la fonction de Chebyshev. Nous obtenons de nouvelles estimations et des améliorations des bornes données par Rosser et Schoenfeld, Schoenfeld et Robin pour les fonctionsCes estimations sont obtenues en utilisant des méthodes basées sur l’intégrale de Stieltjes et par calcul direct pour les petites valeurs.