Weakly compact sets in

F. Delbaen

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1977-1978)

  • page 1-4

How to cite

top

Delbaen, F.. "Weakly compact sets in $L^1/H^1_0$." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1977-1978): 1-4. <http://eudml.org/doc/109192>.

@article{Delbaen1977-1978,
author = {Delbaen, F.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {Weakly Compact Sets; Hardy Space; Uniform Algebra},
language = {eng},
pages = {1-4},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Weakly compact sets in $L^1/H^1_0$},
url = {http://eudml.org/doc/109192},
year = {1977-1978},
}

TY - JOUR
AU - Delbaen, F.
TI - Weakly compact sets in $L^1/H^1_0$
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1977-1978
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 4
LA - eng
KW - Weakly Compact Sets; Hardy Space; Uniform Algebra
UR - http://eudml.org/doc/109192
ER -

References

top
  1. [1] Chaumat: Une généralisation d'un théorème de Dunford-Pettis, Analyse Harmonique d'Orsay. ParisXI (preprint, 1974) 
  2. [2] Cnop-Dellaen: A Dunford-Pettis theorem for L1/H∞. Journal of Functional Analysis24, 4 (1977) 364-378. Zbl0349.46047
  3. [3] Dunford-Schwartz: Linear Operators, Part 1, Interscience, New York (1958) Zbl0084.10402
  4. [4] Gamelin: Uniform Algebras. Prentice Hall, Englewood Cliffs (1969) Zbl0213.40401MR410387
  5. [5] Hewitt-Yosida: Finitely additive measures. Trans. Amer. Math. Soc.72 (1952) p. 46-66. Zbl0046.05401MR45194

NotesEmbed ?

top

You must be logged in to post comments.