La méthode d'interpolation complexe : applications aux treillis de Banach

G. Pisier

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979)

  • page 1-18

How to cite

top

Pisier, G.. "La méthode d'interpolation complexe : applications aux treillis de Banach." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979): 1-18. <http://eudml.org/doc/109200>.

@article{Pisier1978-1979,
author = {Pisier, G.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {Banach lattice of complex functions; complex interpolation method},
language = {fre},
pages = {1-18},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {La méthode d'interpolation complexe : applications aux treillis de Banach},
url = {http://eudml.org/doc/109200},
year = {1978-1979},
}

TY - JOUR
AU - Pisier, G.
TI - La méthode d'interpolation complexe : applications aux treillis de Banach
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1978-1979
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 18
LA - fre
KW - Banach lattice of complex functions; complex interpolation method
UR - http://eudml.org/doc/109200
ER -

References

top
  1. [1] B. Beauzamy, Espaces d'interpolation réels: topologie et géométrie, Springer Lecture Notes No 666 (1978). Zbl0382.46021MR513228
  2. [2] J. Bergh et J. Löfström, Interpolation spaces, an introduction, Springer VerlagGrundlehren223 (1976). Zbl0344.46071MR482275
  3. [3] A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math.24 (1964) 113-190. Zbl0204.13703MR167830
  4. [4] J.L. Krivine, Théorèmes de factorisation dans les espaces réticulés, exposés 22-23 du Séminaire Maurey-Schwartz 73-74, Ecole Polytechnique, Paris. Zbl0295.47024MR440334
  5. [5] S. Kwapień, On operators factorizable through L p-spaces, Bull. Soc. Math. France, Mémoire31-32 (1972) 215-225. Zbl0246.47040MR397464
  6. [6] D. Lewis, Finite dimensional subspaces of Lp, Studia Math.63 (1978) 207-212. Zbl0406.46023MR511305
  7. [7] D. Lewis, N. Tomczak-Jaegermann, Hilbertian and complemented finite dimensional subspaces of Banach lattices and unitary ideals, to appear. Zbl0422.46019MR561984
  8. [8] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, vol. II, Functions spaces, Springer Verlag Ergebnisse, Berlin-Heidelberg -New York (1979). Zbl0403.46022MR415253
  9. [9] J.L. Lions, J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. I.H.E.S.19 (1964) 6-58. Zbl0148.11403
  10. [10] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp, Astérisque No11 (1974) S.M.F. Zbl0278.46028
  11. [11] J. Peetre, Sur la transformation de Fourier de fonctions à valeurs vectorielles, Rend. Sem. Mat. Padova42 (1969) 15-26. Zbl0241.46033MR256153
  12. [12] G. Pisier, Martingales with values in uniformly convex spaces, Israël J. Math.20 (1975) 325-350. Zbl0344.46030MR394135
  13. [13] H.P. Rosenthal, On subspaces of Lp, Annals of Maths.97 (1973) 344-373. Zbl0253.46049MR312222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.