Comparison of Metric Spectral Gaps

Assaf Naor

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 1-52, electronic only
  • ISSN: 2299-3274

Abstract

top
Let A = (aij) ∊ Mn(ℝ) be an n by n symmetric stochastic matrix. For p ∊ [1, ∞) and a metric space (X, dX), let γ(A, dpx) be the infimum over those γ ∊ (0,∞] for which every x1, . . . , xn ∊ X satisfy [...] Thus γ (A, dpx) measures the magnitude of the nonlinear spectral gap of the matrix A with respect to the kernel dpX : X × X →[0,∞). We study pairs of metric spaces (X, dX) and (Y, dY ) for which there exists Ψ: (0,∞)→(0,∞) such that γ (A, dpX) ≤Ψ (A, dpY ) for every symmetric stochastic A ∊ Mn(ℝ) with (A, dpY ) < ∞. When Ψ is linear a complete geometric characterization is obtained. Our estimates on nonlinear spectral gaps yield new embeddability results as well as new nonembeddability results. For example, it is shown that if n ∊ ℕ and p ∊ (2,∞) then for every f1, . . . , fn ∊ Lp there exist x1, . . . , xn ∊ L2 such that [...] and [...] This statement is impossible for p ∊ [1, 2), and the asymptotic dependence on p in (0.1) is sharp. We also obtain the best known lower bound on the Lp distortion of Ramanujan graphs, improving over the work of Matoušek. Links to Bourgain-Milman-Wolfson type and a conjectural nonlinear Maurey-Pisier theorem are studied.

How to cite

top

Assaf Naor. "Comparison of Metric Spectral Gaps." Analysis and Geometry in Metric Spaces 2.1 (2014): 1-52, electronic only. <http://eudml.org/doc/266745>.

@article{AssafNaor2014,
abstract = {Let A = (aij) ∊ Mn(ℝ) be an n by n symmetric stochastic matrix. For p ∊ [1, ∞) and a metric space (X, dX), let γ(A, dpx) be the infimum over those γ ∊ (0,∞] for which every x1, . . . , xn ∊ X satisfy [...] Thus γ (A, dpx) measures the magnitude of the nonlinear spectral gap of the matrix A with respect to the kernel dpX : X × X →[0,∞). We study pairs of metric spaces (X, dX) and (Y, dY ) for which there exists Ψ: (0,∞)→(0,∞) such that γ (A, dpX) ≤Ψ (A, dpY ) for every symmetric stochastic A ∊ Mn(ℝ) with (A, dpY ) < ∞. When Ψ is linear a complete geometric characterization is obtained. Our estimates on nonlinear spectral gaps yield new embeddability results as well as new nonembeddability results. For example, it is shown that if n ∊ ℕ and p ∊ (2,∞) then for every f1, . . . , fn ∊ Lp there exist x1, . . . , xn ∊ L2 such that [...] and [...] This statement is impossible for p ∊ [1, 2), and the asymptotic dependence on p in (0.1) is sharp. We also obtain the best known lower bound on the Lp distortion of Ramanujan graphs, improving over the work of Matoušek. Links to Bourgain-Milman-Wolfson type and a conjectural nonlinear Maurey-Pisier theorem are studied.},
author = {Assaf Naor},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Metric embeddings; nonlinear spectral gaps; expanders; nonlinear type; metric embeddings},
language = {eng},
number = {1},
pages = {1-52, electronic only},
title = {Comparison of Metric Spectral Gaps},
url = {http://eudml.org/doc/266745},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Assaf Naor
TI - Comparison of Metric Spectral Gaps
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 1
EP - 52, electronic only
AB - Let A = (aij) ∊ Mn(ℝ) be an n by n symmetric stochastic matrix. For p ∊ [1, ∞) and a metric space (X, dX), let γ(A, dpx) be the infimum over those γ ∊ (0,∞] for which every x1, . . . , xn ∊ X satisfy [...] Thus γ (A, dpx) measures the magnitude of the nonlinear spectral gap of the matrix A with respect to the kernel dpX : X × X →[0,∞). We study pairs of metric spaces (X, dX) and (Y, dY ) for which there exists Ψ: (0,∞)→(0,∞) such that γ (A, dpX) ≤Ψ (A, dpY ) for every symmetric stochastic A ∊ Mn(ℝ) with (A, dpY ) < ∞. When Ψ is linear a complete geometric characterization is obtained. Our estimates on nonlinear spectral gaps yield new embeddability results as well as new nonembeddability results. For example, it is shown that if n ∊ ℕ and p ∊ (2,∞) then for every f1, . . . , fn ∊ Lp there exist x1, . . . , xn ∊ L2 such that [...] and [...] This statement is impossible for p ∊ [1, 2), and the asymptotic dependence on p in (0.1) is sharp. We also obtain the best known lower bound on the Lp distortion of Ramanujan graphs, improving over the work of Matoušek. Links to Bourgain-Milman-Wolfson type and a conjectural nonlinear Maurey-Pisier theorem are studied.
LA - eng
KW - Metric embeddings; nonlinear spectral gaps; expanders; nonlinear type; metric embeddings
UR - http://eudml.org/doc/266745
ER -

References

top
  1. [1] N. Alon, R. Boppana, and J. Spencer. An asymptotic isoperimetric inequality. Geom. Funct. Anal., 8(3), 411-436, 1998.[Crossref] Zbl0907.60018
  2. [2] N. Alon and Y. Roichman. Random Cayley graphs and expanders. Random Structures Algorithms, 5(2), 271-284, 1994. Zbl0798.05048
  3. [3] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. J. Amer. Math. Soc., 21(1), 1-21 (electronic), 2008. Zbl1132.68070
  4. [4] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. J. ACM, 56(2), Art. 5, 37, 2009. Zbl1325.68255
  5. [5] P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111(4), 429-448, 1983. Zbl0597.54015
  6. [6] K. Ball. Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal., 2(2), 137-172, 1992.[Crossref] Zbl0788.46050
  7. [7] K. Ball, E. A. Carlen, and E. H. Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math., 115(3), 463-482, 1994. Zbl0803.47037
  8. [8] Y. Bartal, N. Linial, M. Mendel, and A. Naor. On metric Ramsey-type phenomena. Ann. ofMath. (2), 162(2), 643-709, 2005. Zbl1114.46007
  9. [9] Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2000. Zbl0946.46002
  10. [10] P. Biswal, J. R. Lee, and S. Rao. Eigenvalue bounds, spectral partitioning, and metrical deformations via flows. J. ACM, 57(3), Art. 13, 23, 2010. Zbl1327.05199
  11. [11] B. Bollobás and W. Fernandez de la Vega. The diameter of random regular graphs. Combinatorica, 2(2), 125-134, 1982.[Crossref] Zbl0505.05053
  12. [12] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math., 52(1-2), 46-52, 1985. Zbl0657.46013
  13. [13] J. Bourgain, V. Milman, and H. Wolfson. On type of metric spaces. Trans. Amer. Math. Soc., 294(1), 295-317, 1986. Zbl0617.46024
  14. [14] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. 
  15. [15] A. Z. Broder and E. Shamir. On the second eigenvalue of random regular graphs. In 28th Annual Symposium on Foundations of Computer Science, pages 286-294, 1987. 
  16. [16] A.-P. Calderón. Intermediate spaces and interpolation, the complex method. Studia Math., 24, 113-190, 1964. Zbl0204.13703
  17. [17] F. Chaatit. On uniform homeomorphisms of the unit spheres of certain Banach lattices. Pacific J.Math., 168(1), 11-31, 1995. Zbl0823.46016
  18. [18] I. Chavel. Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL, 1984. Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk. 
  19. [19] S. Chawla, A. Gupta, and H. Räcke. Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut. ACM Trans. Algorithms, 4(2), Art. 22, 18, 2008. Zbl1297.68234
  20. [20] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pages 195-199. Princeton Univ. Press, Princeton, N. J., 1970. 
  21. [21] D. Christofides and K. Markström. Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales. Random Structures Algorithms, 32(1), 88-100, 2008. Zbl1130.05030
  22. [22] F. Chung. Diameters and eigenvalues. J. Amer. Math. Soc., 2(2), 187-195, 1989.[Crossref] Zbl0678.05037
  23. [23] M. Cwikel and S. Reisner. Interpolation of uniformly convex Banach spaces. Proc. Amer. Math. Soc., 84(4), 555-559, 1982.[Crossref] Zbl0497.46052
  24. [24] M. de la Salle. Towards Banach space strong property (T) for SL(3, R). Preprint available at http://arxiv.org/abs/1307.2475, 2013. 
  25. [25] N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi. Integrality gaps for sparsest cut and minimum linear arrangement problems. In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 537-546. ACM, New York, 2006. Zbl1301.05332
  26. [26] M. M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997. 
  27. [27] J. Ding, J. R. Lee, and Y. Peres. Markov type and threshold embeddings. Geom. Funct. Anal., 23(4), 1207-1229, 2013.[Crossref] Zbl1279.46013
  28. [28] J. Elton. Sign-embeddings of ln1 . Trans. Amer. Math. Soc., 279(1), 113-124, 1983. Zbl0525.46011
  29. [29] P. Enflo. Uniform homeomorphisms between Banach spaces. In Séminaire Maurey-Schwartz (1975-1976), Espaces, Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. No. 18, page 7. CentreMath., École Polytech., Palaiseau, 1976. Zbl0341.46009
  30. [30] J. Fakcharoenphol and K. Talwar. An improved decomposition theorem for graphs excluding a fixed minor. In Approximation, randomization, and combinatorial optimization, volume2764 of Lecture Notes in Comput. Sci., pages 36-46. Springer, Berlin, 2003. Zbl1279.05053
  31. [31] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding technique for MAX CUT. Random Structures Algorithms, 20(3), 403-440, 2002. Probabilistic methods in combinatorial optimization. [32] M. Fiedler. Laplacian of graphs and algebraic connectivity. In Combinatorics and graph theory (Warsaw, 1987), volume 25 of Banach Center Publ., pages 57-70. PWN, Warsaw, 1989. Zbl1005.90052
  32. [33] T. Figiel. On the moduli of convexity and smoothness. Studia Math., 56, 121-155, 1976. Zbl0344.46052
  33. [34] T. Figiel, W. B. Johnson, and G. Schechtman. Random sign embeddings from lnr , 2 < r < 1. Proc. Amer. Math. Soc., 102(1), 102-106, 1988. Zbl0655.46016
  34. [35] J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc., 195(910), viii+100, 2008. Zbl1177.05070
  35. [36] E. D. Gluskin, A. Pietsch, and J. Puhl. A generalization of Khintchine’s inequality and its application in the theory of operator ideals. Studia Math., 67(2), 149-155, 1980. Zbl0441.47032
  36. [37] F. Göring, C. Helmberg, and S. Reiss. Graph realizations associated with minimizing themaximumeigenvalue of the Laplacian. Math. Program., 131(1-2, Ser. A), 95-111, 2012. Zbl1232.05124
  37. [38] F. Göring, C. Helmberg, and M. Wappler. Embedded in the shadow of the separator. SIAM J. Optim., 19(1), 472-501, 2008. Zbl1169.05347
  38. [39] M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1), 73-146, 2003.[Crossref] Zbl1122.20021
  39. [40] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin, second edition, 1993. Zbl0837.05001
  40. [41] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In 44th Symposium on Foundations of Computer Science, pages 534-543, 2003. 
  41. [42] L. H. Harper. Optimal numberings and isoperimetric problems on graphs. J. Combinatorial Theory, 1, 385-393, 1966. Zbl0158.20802
  42. [43] I. Haviv and O. Regev. The Euclidean distortion of flat tori. J. Topol. Anal., 5(2), 205-223, 2013. Zbl1279.46014
  43. [44] J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.[Crossref] Zbl0985.46008
  44. [45] T. Hytönen and A. Naor. Pisier’s inequality revisited. Studia Math., 215(3), 221-235, 2013. Zbl1285.46007
  45. [46] M. Jerrum and A. Sinclair. Conductance and the rapid mixing property for markov chains: the approximation of the permanent resolved (preliminary version). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages 235-244, 1988. 
  46. [47] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitzmappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189-206. Amer. Math. Soc., Providence, RI, 1984. 
  47. [48] D. M. Kane and R. Meka. A PRG for Lipschitz functions of polynomials with applications to sparsest cut. In STOC’13: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pages 1-10, 2013. Zbl1293.65007
  48. [49] G. Kasparov and G. Yu. The coarse geometric Novikov conjecture and uniform convexity. Adv. Math., 206(1), 1-56, 2006.[Crossref] Zbl1102.19003
  49. [50] S. Khot and A. Naor. Nonembeddability theorems via Fourier analysis. Math. Ann., 334(4), 821-852, 2006. Zbl1102.46051
  50. [51] M. D. Kirszbraun. Über die zusammenziehenden und Lipschitzchen Transformationen. Fundam. Math., 22, 77-108, 1934. Zbl0009.03904
  51. [52] P. N. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and multicommodity flow. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 682-690, 1993. Zbl1310.90017
  52. [53] T. Kondo. CAT(0) spaces and expanders. Mathematische Zeitschrift, pages 1-13, 2011. 
  53. [54] R. Krauthgamer and Y. Rabani. Improved lower bounds for embeddings into L1. SIAM J. Comput., 38(6), 2487-2498, 2009. Zbl1191.68869
  54. [55] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Eficient search for approximate nearest neighbor in high dimensional spaces. SIAM J. Comput., 30(2), 457-474 (electronic), 2000. Zbl0963.68078
  55. [56] V. Lafiorgue. Un renforcement de la propriété (T). Duke Math. J., 143(3), 559-602, 2008. 
  56. [57] V. Lafiorgue. Propriété (T) renforcée Banachique et transformation de Fourier rapide. J. Topol. Anal., 1(3), 191-206, 2009. 
  57. [58] U. Lang and T. Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int.Math. Res. Not., 58, 3625-3655, 2005.[Crossref] Zbl1095.53033
  58. [59] G. F. Lawler and A. D. Sokal. Bounds on the L2 spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality. Trans. Amer. Math. Soc., 309(2), 557-580, 1988. Zbl0716.60073
  59. [60] M. Ledoux. The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001. 
  60. [61] J. R. Lee. On distance scales, embeddings, and eficient relaxations of the cut cone. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 92-101 (electronic), New York, 2005. ACM. Zbl1297.68244
  61. [62] J. R. Lee and A. Naor. Extending Lipschitz functions via random metric partitions. Invent. Math., 160(1), 59-95, 2005. Zbl1074.46004
  62. [63] J. R. Lee and A. Sidiropoulos. Genus and the geometry of the cut graph. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 193-201, 2010. Zbl1288.05062
  63. [64] B. Liao. Strong Banach property (T) for simple algebraic groups of higher rank. Preprint available at http://arxiv.org/abs/ 1301.1861, 2013. 
  64. [65] J. Lindenstrauss. On the modulus of smoothness and divergent series in Banach spaces. Michigan Math. J., 10, 241-252, 1963. Zbl0115.10001
  65. [66] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2), 215-245, 1995.[Crossref] Zbl0827.05021
  66. [67] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3), 261-277, 1988.[Crossref] Zbl0661.05035
  67. [68] R. Lyons and Y. Peres. Probability on Trees and Networks. Forthcoming book, available at http://mypage.iu.edu/~rdlyons/ prbtree/book.pdf, 2013. [69] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii, 24(1), 51-60, 1988. 
  68. [70] J. Matoušek. On embedding expanders into `p spaces. Israel J. Math., 102, 189-197, 1997. Zbl0947.46007
  69. [71] B.Maurey. Type, cotype and K-convexity. In Handbook of the geometry of Banach spaces, Vol. 2, pages 1299-1332. North- Holland, Amsterdam, 2003. 
  70. [72] B.Maurey and G. Pisier. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math., 58(1), 45-90, 1976. Zbl0344.47014
  71. [73] S. Mazur. Une remarque sur l’homéomorphie des champs fonctionels. Studia Math., 1, 83-85, 1929. Zbl55.0242.01
  72. [74] M. Mendel and A. Naor. Metric cotype. Ann. of Math. (2), 168(1):247-298, 2008. Preliminary version in SODA ’06. Zbl1187.46014
  73. [75] M. Mendel and A. Naor. Nonlinear spectral calculus and super-expanders. To appear in Inst. Hautes Études Sci. Publ. Math., available at http://arxiv.org/abs/1207.4705, 2012. 
  74. [76] M. Mendel and A. Naor. Expanders with respect to Hadamard spaces and random graphs. Preprint available at http://arxiv.org/abs/1306.5434, 2013. Zbl1316.05109
  75. [77] M. Mendel and A. Naor. Spectral calculus and Lipschitz extension for barycentric metric spaces. Anal. Geom. Metr. Spaces, 1, 163-199, 2013. Zbl1297.54037
  76. [78] A. Naor. An introduction to the Ribe program. Jpn. J. Math., 7(2), 167-233, 2012. Zbl1261.46013
  77. [79] A. Naor. On the Banach-space-valued Azuma inequality and small-set isoperimetry of Alon-Roichman graphs. Comb. Probab. Comput., 21(4), 623-634, 2012.[Crossref] Zbl1247.05104
  78. [80] A. Naor, Y. Peres, O. Schramm, and S. Shefield. Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. Duke Math. J., 134(1), 165-197, 2006. Zbl1108.46012
  79. [81] A. Naor, Y. Rabani, and A. Sinclair. Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs. J. Funct. Anal., 227(2), 273-303, 2005. Zbl1104.68087
  80. [82] A. Naor and G. Schechtman. Remarks on non linear type and Pisier’s inequality. J. Reine Angew. Math., 552, 213-236, 2002. Zbl1033.46013
  81. [83] A. Naor and L. Silberman. Poincaré inequalities, embeddings, and wild groups. Compos. Math., 147(5), 1546-1572, 2011. Zbl1267.20057
  82. [84] I. Newman and Y. Rabinovich. Hard metrics from Cayley graphs of abelian groups. Theory Comput., 5, 125-134, 2009. Zbl1213.05126
  83. [85] E. Odell and T. Schlumprecht. The distortion problem. Acta Math., 173(2), 259-281, 1994. Zbl0828.46005
  84. [86] S.-i. Ohta. Extending Lipschitz and Hölder maps between metric spaces. Positivity, 13(2), 407-425, 2009.[Crossref] Zbl1198.54048
  85. [87] S.-i. Ohta. Markov type of Alexandrov spaces of non-negative curvature. Mathematika, 55(1-2), 177-189, 2009.[Crossref] Zbl1195.46019
  86. [88] N. Ozawa. A note on non-amenability of B(lp) for p = 1, 2. Internat. J. Math., 15(6), 557-565, 2004. 
  87. [89] G. Pisier. Sur les espaces de Banach qui ne contiennent pas uniformément de l1 n. C. R. Acad. Sci. Paris Sér. A-B, 277, A991-A994, 1973. Zbl0271.46011
  88. [90] G. Pisier. Martingales with values in uniformly convex spaces. Israel J. Math., 20(3-4), 326-350, 1975. Zbl0344.46030
  89. [91] G. Pisier. La méthode d’interpolation complexe: applications aux treillis de Banach. In Séminaire d’Analyse Fonctionnelle (1978-1979), pages Exp. No. 17, 18. École Polytech., Palaiseau, 1979. Zbl0412.46026
  90. [92] G. Pisier. Probabilistic methods in the geometry of Banach spaces. In Probability and analysis (Varenna, 1985), volume 1206 of Lecture Notes in Math., pages 167-241. Springer, Berlin, 1986. 
  91. [93] G. Pisier. Complex interpolation between Hilbert, Banach and operator spaces. Mem. Amer. Math. Soc., 208(978), vi+78, 2010. Zbl1213.46002
  92. [94] Y. Rabinovich. On average distortion of embedding metrics into the line. Discrete Comput. Geom., 39(4), 720-733, 2008.[Crossref] Zbl1158.68050
  93. [95] S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In Proceedings of the Fifteenth Annual Symposium on Computational Geometry (Miami Beach, FL, 1999), pages 300-306 (electronic), New York, 1999. ACM. 
  94. [96] Y. Raynaud. On ultrapowers of non commutative Lp spaces. J. Operator Theory, 48(1), 41-68, 2002. Zbl1029.46102
  95. [97] C. A. Rogers. A note on coverings and packings. J. London Math. Soc., 25, 327-331, 1950. Zbl0038.02902
  96. [98] J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem. SIAM Rev., 48(4), 681-699, 2006.[Crossref] Zbl1109.60324
  97. [99] M. Talagrand. An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities. Proc. Amer.Math. Soc., 104(3), 905-909, 1988.[Crossref] Zbl0691.60015
  98. [100] P. Wojtaszczyk. Banach spaces for analysts, volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1991 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.