Operators into L p which factor through l p

W. B. Johnson

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980)

  • page 1-6

How to cite


Johnson, W. B.. "Operators into $L_p$ which factor through $l_p$." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980): 1-6. <http://eudml.org/doc/109225>.

author = {Johnson, W. B.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {factoring},
language = {eng},
pages = {1-6},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Operators into $L_p$ which factor through $l_p$},
url = {http://eudml.org/doc/109225},
year = {1979-1980},

AU - Johnson, W. B.
TI - Operators into $L_p$ which factor through $l_p$
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1979-1980
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 6
LA - eng
KW - factoring
UR - http://eudml.org/doc/109225
ER -


  1. [1] T. Figiel and W.B. Johnson, A uniformly convex Banach space which contains no lp, Compositio Math.29 (1974), 179-190. Zbl0301.46013MR355537
  2. [2] W.B. Johnson, Operators into L which factor through l p, J. London Math. Soc. (2) 14 (1976), 333-339. Zbl0413.47025MR425667
  3. [3] W.B. Johnson, Quotients of L which are quotients of l p, Compositio Math. Zbl0375.46023
  4. [4] W.B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math.55 (1976), 201-205. Zbl0362.46015MR430756
  5. [5] W.B. Johnson and E.W. Odell, Subspaces of L which embed into l p, Compositio Math.28 (1974), 34-49. Zbl0282.46020
  6. [6] M.I. Kadec and A. Peczynski, Bases, lacunary sequences, and complemented subspaces in the spaces LpStudia Math.21 (1962), 161-176. Zbl0102.32202
  7. [7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I, Sequence spaces, Springer-Verlag, Ergebnisse No. 92 (1977). Zbl0362.46013MR500056
  8. [8] A. Peczynski, Projections in certain Banach spaces, Studia Math.19 (1960), 209-228. Zbl0104.08503MR126145
  9. [9] H.P. Rosenthal, On the subspaces of Lp (p &gt; 2) spanned by sequences of independent random variables, Israel J. Math.8 (1970), 273-303. Zbl0213.19303MR271721

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.