A uniformly convex Banach space which contains no l p

T. Figiel; W. B. Johnson

Compositio Mathematica (1974)

  • Volume: 29, Issue: 2, page 179-190
  • ISSN: 0010-437X

How to cite

top

Figiel, T., and Johnson, W. B.. "A uniformly convex Banach space which contains no $l_p$." Compositio Mathematica 29.2 (1974): 179-190. <http://eudml.org/doc/89232>.

@article{Figiel1974,
author = {Figiel, T., Johnson, W. B.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {179-190},
publisher = {Noordhoff International Publishing},
title = {A uniformly convex Banach space which contains no $l_p$},
url = {http://eudml.org/doc/89232},
volume = {29},
year = {1974},
}

TY - JOUR
AU - Figiel, T.
AU - Johnson, W. B.
TI - A uniformly convex Banach space which contains no $l_p$
JO - Compositio Mathematica
PY - 1974
PB - Noordhoff International Publishing
VL - 29
IS - 2
SP - 179
EP - 190
LA - eng
UR - http://eudml.org/doc/89232
ER -

References

top
  1. [1] W.J. Davis, T. Figiel, W.B. Johnson, and A. Pelczynski: Factoring weakly compact operators. J. Functional Anal.17 (1974). Zbl0306.46020MR355536
  2. [2] M.M. Day: Some more uniformly convex spaces. Bull. Amer. Math. Soc.47 (1941) 504-507. Zbl0027.11003MR4068JFM67.0402.03
  3. [3] E. Dubinsky, A. Pelczynski, and H.P. Rosenthal: On Banach spaces X for which π2(£∞, X) = B(£∞, X). Studia Math.44 (1972) 617-648. Zbl0262.46018
  4. [4] P. Enflo: Banach spaces which can be given an equivalent uniformly convex norm. Israel J. Math.13 (1972) 281-288. Zbl0259.46012MR336297
  5. [5] P. Enflo and H.P. Rosenthal: Some results concerning LP(μ) spaces. J. Functional Anal.14 (1973) 325-348. Zbl0265.46032
  6. [6] T. Figiel: An example of an infinite dimensional Banach space non-isomorphic to its Cartesian square. Studia Math.42 (1972) 295-306. Zbl0213.12801MR306875
  7. [7] R.C. James: Uniformly non-square Banach spaces. Ann. of Math.80 (1964) 542-550. Zbl0132.08902MR173932
  8. [8] W.B. Johnson: On finite dimensional subspaces of Banach spaces with local unconditional structure. Studia Math.51 (1974). Zbl0301.46012MR358306
  9. [9] B. Maurey: Théorémes de factorisation pour les opérateurs linéaires á valeurs dans les espaces Lp. Société Mathématique de France (1974). Zbl0278.46028MR344931
  10. [10] H.P. Rosenthal: On subspaces of Lp. Ann. of Math.97 (1973) 344-373. Zbl0253.46049MR312222
  11. [11] B.S. Tsirelson: Not every Banach space contains lp or c0. 

Citations in EuDML Documents

top
  1. J. T. Lapreste, Suites écartables dans les espaces de Banach
  2. Z. Altshuler, A Banach space with a symmetric basis which contains no p or c 0 , and all its symmetric basic sequences are equivalent
  3. Julio Bernués, Javier Pascual, On total incomparability of mixed Tsirelson spaces
  4. T. Figiel, Uniformly convex norms in spaces with unconditional basis
  5. Boban Veličković, A note on Tsirelson type ideals
  6. Robert Judd, A dichotomy on Schreier sets
  7. Richard Haydon, Subspaces of the Bourgain-Delbaen space
  8. Vassiliki Farmaki, On spreading c 0 -sequences in Banach spaces
  9. B. Maurey, G. Schechtman, Some remarks on symmetric basic sequences in L1
  10. W. B. Johnson, Operators into L p which factor through l p

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.