A class of elliptic differential equations with discontinuous coefficients

Charles B., Jr. Morrey

Séminaire Brelot-Choquet-Deny. Théorie du potentiel (1961-1962)

  • Volume: 6, Issue: 1, page 1-23

How to cite

top

Morrey, Charles B., Jr.. "A class of elliptic differential equations with discontinuous coefficients." Séminaire Brelot-Choquet-Deny. Théorie du potentiel 6.1 (1961-1962): 1-23. <http://eudml.org/doc/109303>.

@article{Morrey1961-1962,
author = {Morrey, Charles B., Jr.},
journal = {Séminaire Brelot-Choquet-Deny. Théorie du potentiel},
keywords = {partial differential equations},
language = {eng},
number = {1},
pages = {1-23},
publisher = {Secrétariat mathématique},
title = {A class of elliptic differential equations with discontinuous coefficients},
url = {http://eudml.org/doc/109303},
volume = {6},
year = {1961-1962},
}

TY - JOUR
AU - Morrey, Charles B., Jr.
TI - A class of elliptic differential equations with discontinuous coefficients
JO - Séminaire Brelot-Choquet-Deny. Théorie du potentiel
PY - 1961-1962
PB - Secrétariat mathématique
VL - 6
IS - 1
SP - 1
EP - 23
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/109303
ER -

References

top
  1. [1] Hopf ( E.). - Zum analytischen Charakter der Lösungen regulärer zweidimensionaler Variationsprobleme, Math. Z., t. 30, 1929, p. 404-413. Zbl55.0898.03MR1545070JFM55.0898.03
  2. [2] Lax ( P.D.) and Milgram ( A.N.). - Parabolic equations, Contributions to the theory of partial differential equations ; p. 167-190. - Princeton, Princeton University Press, 1954 (Annals of mathematical Studies, 33). Zbl0058.08703MR67317
  3. [3] Morrey ( Charles B., Jr). - Existence and differentiability theorems for the solutions of variational problems for multiple integrals, Bull. Amer. math. soc., t. 46, 1940, p. 439-458. Zbl0063.04105MR2473
  4. [4] Morrey ( Charles B., Jr). - Multiple integral problems in the calculus of variations and related topics, Univ. of Calif., Publ. Math., N. S., t. 1, 1943, p. 1-130. Zbl0063.04107MR11537
  5. [5] Morrey ( Charles B., Jr). - Second order elliptic equations in several variables and Hölder continuity, Math. Z., t. 72, 1959, p. 146-164. Zbl0094.07802MR120446
  6. [6] Morrey ( Charles B., Jr). - Multiple integral problems in the calculus of variations and related topics, Ann. Sc. norm. sup. Pisa, Série 3, t. 14, 1960, p. 1-61. Zbl0094.08104MR115117
  7. [7] Morrey ( Charles B., Jr). - Des résultats récents du calcul des variations. Notes on lectures given in the Seminar of Professors Leray, Schwartz and Malgrange at the Collège de France, in February 1962 (not published). 
  8. [8] Moser ( J.). - A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. pure and appl. Math., t. 13, 1960, p. 457-468. Zbl0111.09301MR170091
  9. [9] Soboiev ( S.). - On a theorem in functional analysis [in Russian], Mat. Sbornik, N. S., t. 4, 1938, p. 471-497. Zbl0131.11501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.