A class of elliptic differential equations with discontinuous coefficients
Séminaire Brelot-Choquet-Deny. Théorie du potentiel (1961-1962)
- Volume: 6, Issue: 1, page 1-23
Access Full Article
topHow to cite
topMorrey, Charles B., Jr.. "A class of elliptic differential equations with discontinuous coefficients." Séminaire Brelot-Choquet-Deny. Théorie du potentiel 6.1 (1961-1962): 1-23. <http://eudml.org/doc/109303>.
@article{Morrey1961-1962,
author = {Morrey, Charles B., Jr.},
journal = {Séminaire Brelot-Choquet-Deny. Théorie du potentiel},
keywords = {partial differential equations},
language = {eng},
number = {1},
pages = {1-23},
publisher = {Secrétariat mathématique},
title = {A class of elliptic differential equations with discontinuous coefficients},
url = {http://eudml.org/doc/109303},
volume = {6},
year = {1961-1962},
}
TY - JOUR
AU - Morrey, Charles B., Jr.
TI - A class of elliptic differential equations with discontinuous coefficients
JO - Séminaire Brelot-Choquet-Deny. Théorie du potentiel
PY - 1961-1962
PB - Secrétariat mathématique
VL - 6
IS - 1
SP - 1
EP - 23
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/109303
ER -
References
top- [1] Hopf ( E.). - Zum analytischen Charakter der Lösungen regulärer zweidimensionaler Variationsprobleme, Math. Z., t. 30, 1929, p. 404-413. Zbl55.0898.03MR1545070JFM55.0898.03
- [2] Lax ( P.D.) and Milgram ( A.N.). - Parabolic equations, Contributions to the theory of partial differential equations ; p. 167-190. - Princeton, Princeton University Press, 1954 (Annals of mathematical Studies, 33). Zbl0058.08703MR67317
- [3] Morrey ( Charles B., Jr). - Existence and differentiability theorems for the solutions of variational problems for multiple integrals, Bull. Amer. math. soc., t. 46, 1940, p. 439-458. Zbl0063.04105MR2473
- [4] Morrey ( Charles B., Jr). - Multiple integral problems in the calculus of variations and related topics, Univ. of Calif., Publ. Math., N. S., t. 1, 1943, p. 1-130. Zbl0063.04107MR11537
- [5] Morrey ( Charles B., Jr). - Second order elliptic equations in several variables and Hölder continuity, Math. Z., t. 72, 1959, p. 146-164. Zbl0094.07802MR120446
- [6] Morrey ( Charles B., Jr). - Multiple integral problems in the calculus of variations and related topics, Ann. Sc. norm. sup. Pisa, Série 3, t. 14, 1960, p. 1-61. Zbl0094.08104MR115117
- [7] Morrey ( Charles B., Jr). - Des résultats récents du calcul des variations. Notes on lectures given in the Seminar of Professors Leray, Schwartz and Malgrange at the Collège de France, in February 1962 (not published).
- [8] Moser ( J.). - A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. pure and appl. Math., t. 13, 1960, p. 457-468. Zbl0111.09301MR170091
- [9] Soboiev ( S.). - On a theorem in functional analysis [in Russian], Mat. Sbornik, N. S., t. 4, 1938, p. 471-497. Zbl0131.11501
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.