Multiple integral problems in the calculus of variations and related topics

Charles B. Jr Morrey

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1960)

  • Volume: 14, Issue: 1, page 1-61
  • ISSN: 0391-173X

How to cite

top

Morrey, Charles B. Jr. "Multiple integral problems in the calculus of variations and related topics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.1 (1960): 1-61. <http://eudml.org/doc/83238>.

@article{Morrey1960,
author = {Morrey, Charles B. Jr},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {variational calculus},
language = {eng},
number = {1},
pages = {1-61},
publisher = {Scuola normale superiore},
title = {Multiple integral problems in the calculus of variations and related topics},
url = {http://eudml.org/doc/83238},
volume = {14},
year = {1960},
}

TY - JOUR
AU - Morrey, Charles B. Jr
TI - Multiple integral problems in the calculus of variations and related topics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1960
PB - Scuola normale superiore
VL - 14
IS - 1
SP - 1
EP - 61
LA - eng
KW - variational calculus
UR - http://eudml.org/doc/83238
ER -

References

top
  1. [1] N. Aronszajn and K.T. Smith, Functional spaces and functional completion, Ann. Inst. Fourier Grenoble6 (1956), 125-185. Zbl0071.33003MR80878
  2. [2] F.E. Browder, Strongly elliptic systems of differential equations, Contributions to the theory of partial differential equations, 15-51. Ann. of Math. Studies, No 33.Princeton University Press (1954). Zbl0057.32901MR67306
  3. [3] — , Numerous notes in Proc, Nat. Acad. Sci. U.S.A.38 (1952), 230-235 and 741-747; 39 (1953), 179-184 and 185-190; and many others. 
  4. [4] J.W. Calkin, Functions of several variables and ab80lute continuity, I, Duke Math. J.6 (1940), 170-185. Zbl0026.39202MR1278JFM66.1224.03
  5. [5] L. Cesari, An éxistence theorem of the calculics of variations for integrals on parametric surfaces, Amer. J. Math.74 (1952); 265-295. Zbl0046.10901MR50187
  6. [6] S. Cinquini, Sopra l'estremo assoluto degli integrali doppi in forma ordinaria, Ann. Math. Pura Appl, (4) 30 (1949) 249-260. Zbl0041.06801MR36458
  7. [7] R. Courant, Plateau's problem and Dirichlet's principle, Ann. of Math. (2) 38 (1937) 679-724. Zbl0017.26802MR1503362JFM63.1067.01
  8. [8] — , Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Press, New York (1950). Zbl0040.34603
  9. [9] J.M. Danskin, On the existence of minimizing surfaces in parametric double integral problems in the calculus of variations, Rev. Math. Univ. Parma3 (1952) 43-63. Zbl0048.08104MR50186
  10. [10] E. De Giorgi, Sull'analiticità delle extremali degli integrali multipli, Atti Accad. Naz. dei Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 20 (1956), 438-441. Zbl0074.31503MR82045
  11. [11] J. Deny, Les potentiels d'energie finiActa Math.82 (1950), 107-183. Zbl0034.36201MR36371
  12. [12] G. De Rham and K. Kodaira, Harmonic Integrals (mimeographed notes), Institute for Advanced Study, Princeton, N. J. (1950). MR37549
  13. [13] G.F.D. Duff and D.C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math.56 (1952), 128-156. Zbl0049.18901MR48137
  14. [14] G.C. Evans, Fundamental points of potential theory, Rice Inst. Pamphlets7 (1920), 252-359. Zbl48.1268.01JFM48.1268.01
  15. [15] — , Note on a theorem of Bôcher, Amer. J. Math.50 (1928), 123-126. MR1506657JFM54.0508.01
  16. [16] - , Potentials of positive mass I. Trans. Amer. Math. Soc.37 (1935), 226-253. Zbl61.0529.03MR1501785JFM61.0529.03
  17. [17] G Fichera, Esistenza del minimo in un ctassico problema en calcul delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Soi. Fis. Mat. Naz. (8) 11 (1951), 34-39. Zbl0054.04303MR46588
  18. [18] K.O. Friedrich, On the identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc.55 (1944), 132-151. Zbl0061.26201MR9701
  19. [19] - , On the differentiability of the solutions of linear elliptic differential equations, Comm. Pure Appl. Math.6 (1953), 299-326. Zbl0051.32703MR58828
  20. [20] - , On differential forms on Riemannian manifolds, Comm. Pure Appl. Math.8 (1955), 551-558. Zbl0066.07504MR87763
  21. [21] G. Fubini, Il principio di minimo e i teoremi di esistenza per i problemi di contorno relativi alle equazioni alle derivate parziali di ordine pari, Rend. Circ. Mat. Palermo23 (1907), 58-84. Zbl38.0390.02
  22. [22] M.P. Caffney, The harmonic operator for exterior differential forms, Proc. Nat. Acad. Sci. U.S.A.37 (1951), 48-50. Zbl0042.10205MR48138
  23. [23] — , The heat equation method of Milgram and Roeenbloom for open Riemanniam manifolds, Ann. Of Math.60 (1954), 458-466. Zbl0057.07501MR64933
  24. [24] L. Garding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scad.1 (1953), 55-72. Zbl0053.39101
  25. [25] W.V.D. Hodge, A Dirichlet problem for harmonic functionals with applications to analytic varieties, Proc. London Math. Soc. (2) 36 (1935), 257-303. Zbl0008.02203JFM59.1091.01
  26. [26] — , The Theory and Applications of Harmonic Integrals, Second Edition, Cambridge University Press1952. Zbl0048.15702MR51571
  27. [27] E. Hopf, Zum analytischen Charakter der Lösungen regulärer zweidimensionaler Variationsprobleme, Math. Zeit.30 (1929), 404-413. Zbl55.0898.03MR1545070JFM55.0898.03
  28. [28] F. John, Derivatives of continuous weak solutious of linear elliptic equations, Comm. Pure Appl. Math.6 (1953) 327-335. Zbl0051.32801MR58829
  29. [29] K. Kodaira, Harmonic fields in Riemannian manifolda, Ann. of Math.50 (1949), 587-665. Zbl0034.20502MR31148
  30. [30] P.D. Lax, On Cauchy's problem for hyperboLic equations and the differentiability of the solutions of elliptic equations, Comm. Pure Appl. Math.8 (1955), 615-633. Zbl0067.07502MR78558
  31. [31] H. Lebesgue, Sur Le problème de Dirichlet, Rend. Circ. Mat. Palermo24 (1907), 371-402. JFM38.0392.01
  32. [32] B. Lrvi, Sul principio di Dirichlet, Rend. Ciro. Mat. Palermo22 (1906). 293-359. JFM37.0414.06
  33. [33] H. Lewy, On minimal surfaoes with partially free boundary, Comm. Pure Appl. Math.4 (1952), 1-13. 
  34. [34] L. Lichtenstein, Uber den analytischen Charakter der Lösungen zweidimensionaler Variatiosprobleme, Bull. Acad. Sci. Cracovia, Cl. Sci. Mat. Nat. (A) (1912), 915-941. JFM43.0470.01
  35. [35] — , Zur Theorie der Konforme Abbildutig. Konforme Abbildung nichtanalyticher singularitatenfreier FLachenstiiche auf ebene Gebiete, Bull. Int. Acad. Sci. Cracovia, Mat. Nat. Cl. (A) (1916), 192-217. 
  36. [36] E.J. Mcshane, Integrals ovsr surfaces in parametric form, Ann. of Math.34 (1933), 815-838. Zbl0008.07201MR1503135JFM59.0502.01
  37. [37] — , Parametrizations of saddle surfaces with application to the problem of Plateau, Trans. Amer. Math. Soc.35 (1934), 718-733. Zbl0007.11902JFM59.0502.02
  38. [38] A. Milgram and P. Rosenbloom, Harmoníc forms and heat conduction, Proc. Nat. Acad. Soi. U.S.A.37 (1951), 180-184 and 435-438. Zbl0044.31703
  39. [39] C.B. Morhey, Jr. On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soo.43 (1938), 126-166. Zbl0018.40501MR1501936JFM64.0460.02
  40. [40] — , Functiona of several variables and absolute continuity II, Duke Math. J.6 (1940), 187-215. Zbl0026.39202MR1279JFM66.1224.03
  41. [41] — , A eorrection to a previous paper, Duke Math. J.9 (1942), 120-124. Zbl0063.04106MR6560
  42. [42] — Multiple integral problems in the calculus of variations and related topica, Univ. of Calif. Publications in Math. new ser.1 (1943), 1-130. Zbl0063.04107MR11537
  43. [43] - , The problem of Plateau on a Riemannian manifold, Ann. of Math.49 (1948), 807-851. Zbl0033.39601MR27137
  44. [44] — , Quasi-convexity and the lower-semicontinuity of multiple integrate, Pac. J. Math.2 (1952), 25-53. Zbl0046.10803MR54865
  45. [45] - , Seoond order elliptic systems of differential equations, Ann. of Math. Studies No. 33Princeton University Press, 1954, 101-159. Zbl0057.08301MR68091
  46. [46] — , A variatioval method in the theory of harmonic integrals, IIAmer. J. Math.78 (1956), 137-170. Zbl0070.31402MR87765
  47. [47] C.B. Morrey and J. EellsJr., A variational method in the theory of harmonic integrals I, Ann. of Math.63 (1956), 91-128. Zbl0070.09901MR87764
  48. [48] M. Nagumo, Uber die gleichmässige Sumierbarkeit und ihre Anwendung auf ein Variationsproblem, Jap. J. Math.6 (1929), 173-182. Zbl55.0156.03JFM55.0156.03
  49. [49] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.80 (1958), 931-954. Zbl0096.06902MR100158
  50. [50] O. Nikodym, Sur une classe de fonctions considerées dans l'etude du problème du Dirichlet, Fund. Math.21 (1933), 129-150. Zbl0008.15903JFM59.0290.01
  51. [51] G. Nöbeling, Uber die erste Randwertaufgabe bei regularen Variationsproblemen I. Math. Zeit.51 (1949), 712-7.51. Zbl0035.06604MR35400
  52. [52] H. Rademacheu, Uber partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeha, und uber die Transformation der Doppelintegrale, Math. Ann.79 (1918), 340-359. JFM47.0243.01
  53. [53] F. Rellich, Ein Satz Uber mittlere Konvergence, Gottingen Nach. (Math.-Phys. Kl.)1930), 30-35, Zbl56.0224.02JFM56.0224.02
  54. [54] H. Saks, Theory of the Integral, See. Ed., Warsw-Lwow, 1937; English translation by L. C. Young. Zbl0017.30004JFM63.0183.05
  55. [55] — , On the surfaces without tangent planes, Ann. of Math.34 (1933), 114-124. Zbl0006.04903MR1503100JFM59.0289.01
  56. [56] L. Schwartz, Theorie des distributions I et II, Actitalites Sci. Ind. 1091 et 1122, Publ. Inst. Mate. Univ. Strasbourg 9 et 10, Paris1950 of 1951. Zbl0042.11405
  57. [57] M. Shiffman, Differentiability and analyticity of solutions of double integral variational problemsAnn. of Math.48 (1947), 274-284. Zbl0029.26702MR21256
  58. [58] A.G. Sigalov, Conditions for the existence of a minimum of double integrals in un unbounded region, Doklady Akad. Nank SSSR (N.S.)8 (1951), 741-744 (Russian). Zbl0044.10201MR46589
  59. [59] — , Regular double integrals of the calculus of variations in non-parametric form, Doklady Akad. Nauk SSSR (N.S.)73 (1950), 891-894 (Russian). MR37478
  60. [60] — , Two dimensional problems of the calculus of variations in non-parartretric form, transformed into parametric form, Mat. Sbornik NS94 (76) (1954), 385-406. 
  61. [61] — , On conditions of differentiability and analiticity of solutions of two dimensional problems of variations, Doklady Akad. Nauk SSSR (NS)85 (1952), 273-275. MR50185
  62. [62] G.I. Silova, Existence of an absolute minimum of multiple integrals in the ealeulus of variations, Doklady Akad. Nank SSSR (N.S.)102 (1955), 699-702. Zbl0064.35301MR70861
  63. [63] - , Two dimensional problems of the calculus of variations, Uspehi Matem. Nauk (N.S.)6 (1951), 16-101 (Russian). MR43400
  64. [64] S. Sobolev, Sur quelques evaluations concernant les familles des fonctions ayant des derivees a carré integrable, Comptes Rend. Acd, Sci. SSSR. N.S.I.1936, 279-282. Zbl0014.05702JFM62.0266.01
  65. [65] - , On a theorem of functional analysis, Mat. Sbornik N.S.4 (1938). 471-497. 
  66. [66] D.C. Spfncer, Dirichlet's principle on manifolds, Studies in Mathematics and Mechanics presented to Richard von Mises, Academic Press (1954), 127-134. Zbl0057.07402
  67. [67] G. Stampacchia, Sopra una classe di funzioni in due variabili. Applicazioni agli integrali doppi del caleolo delle variazioni, Giorn. Mat. Battaglini (4) 3 (79) (1950), 169-208. Zbl0041.42802MR47932
  68. [68] — , Gli integrali doppi del calcolo delle variazioni in forma ordinaria, Atti A-ccad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 8 (1950), 21-26. Zbl0036.07204MR36459
  69. [69] — , Sistemi di equazioni di tipo ellittico a derivate parziali del primo ordine e proprietà degli estremi degli integrali multipli, Ricerche Mat.1 (1952), 200-226. Zbl0049.19601MR58141
  70. [70] - , Problemi al contorno per equazioni di tipo ellittico e derivate parziali e questioni di calcolo delle variazioni connesse, Ann. Mat. Para Appl. (4) 33 (1952), 211-238 Zbl0047.33902MR51451
  71. [71] L. Tonelli, Sulla quadratura delle superficie, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (6) 3 (1926), 633-638. JFM52.0251.02
  72. [72] - , Sui massimi e minimi assoluti del calcolo della variazione, Rend. Circ. Mat. Palermo32 (1911), 297-337. Zbl42.0400.01
  73. [73] - , Sul caso regolare nel calcolo delle variazioni, Rend. Circ. Mat. Palermo35 (1913), 49-73. Zbl44.0442.03
  74. [74] — , Sur une méthode directe du catcul des variations, Rend. Ciro. Mat. Palermo39 (1915), 233-264. Zbl45.0615.02
  75. [75] — , La semicontinuità nel calcolo delle variazioni, Rend. Ciro. Mat. Palermo44 (1920), 167-249. 
  76. [76] - , Fondamenti del calcolo delle variazioni, Bologna, Zaniohelli, 3 vols. 
  77. [77] - , Sur la semi-continuité des intégrales doubles du calcul des variations, Acta Math.53 (1929). 325-346. Zbl55.0899.02JFM55.0899.02
  78. [78] - , L'estremo assoluto degli integrali doppi, Ann. Sc. Norm. Pisa (2) 3 (1933), 89-130. Zbl0006.11805JFM59.0500.02
  79. [79] L. Van Hove, Sur l'extension de la condition de Legendre du calcul des variations aux integrals multiples a plusieurs fonctions inconnues, Nederl. Akad. Wetensch.50 (1947), 18-23. Zbl0029.26802MR20223

Citations in EuDML Documents

top
  1. Charles B., Jr. Morrey, A class of elliptic differential equations with discontinuous coefficients
  2. J. Eells, Joseph H. Sampson, Énergie et déformations en géométrie différentielle
  3. Jani Onninen, Xiao Zhong, Continuity of solutions of linear, degenerate elliptic equations
  4. Livio C. Piccinini, Sergio Spagnolo, Una valutazione della regolarità delle soluzioni di sistemi ellittici variazionali in due variabili
  5. C. B. Morrey, Des résultats récents du calcul des variations
  6. Vincenzo Nesi, Enrico Rogora, A complete characterization of invariant jointly rank- convex quadratic forms and applications to composite materials

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.