Sur la Régularité des Solutions faibles des Equations de Navier-Stokes isentropiques en dimension deux

Benoît Desjardins[1]

  • [1] D.M.I., École Normale Supérieure, FranceD.M.I., École Normale Supérieure, France

Séminaire Équations aux dérivées partielles (1997-1998)

  • Volume: 1997-1998, page 1-12

How to cite

top

Desjardins, Benoît. "Sur la Régularité des Solutions faibles des Equations de Navier-Stokes isentropiques en dimension deux." Séminaire Équations aux dérivées partielles 1997-1998 (1997-1998): 1-12. <http://eudml.org/doc/10953>.

@article{Desjardins1997-1998,
affiliation = {D.M.I., École Normale Supérieure, FranceD.M.I., École Normale Supérieure, France},
author = {Desjardins, Benoît},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {2D compressible Navier-Stokes equations; zero density; bounded density; regularity of weak solutions},
language = {fre},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur la Régularité des Solutions faibles des Equations de Navier-Stokes isentropiques en dimension deux},
url = {http://eudml.org/doc/10953},
volume = {1997-1998},
year = {1997-1998},
}

TY - JOUR
AU - Desjardins, Benoît
TI - Sur la Régularité des Solutions faibles des Equations de Navier-Stokes isentropiques en dimension deux
JO - Séminaire Équations aux dérivées partielles
PY - 1997-1998
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1997-1998
SP - 1
EP - 12
LA - fre
KW - 2D compressible Navier-Stokes equations; zero density; bounded density; regularity of weak solutions
UR - http://eudml.org/doc/10953
ER -

References

top
  1. B. Desjardins, A few remarks on ordinary differential equations, C.P.D.E. (1996) no 11-12 21 p. 1667-1703. Zbl0899.35022MR1421208
  2. B. Desjardins, Linear transport equations with values in Sobolev spaces and application to the Navier-Stokes equations, Diff. and Int. Equ no 3 10 (1997) p. 577-586. Zbl0902.76028MR1744862
  3. B. Desjardins, Global existence results for the incompressible density dependant Navier-Stokes equations in the whole space, Diff. and Int. Equ (1997) no 3 10 p. 587-598. Zbl0902.76027MR1744863
  4. B. Desjardins, Regularity results for two dimensional viscous flows, Arch. for Rat. Mech. Anal. (1997) 137 p. 135-158. Zbl0880.76090MR1463792
  5. R. Coifman, P.L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), p.247-286. Zbl0864.42009MR1225511
  6. R.J. Di Perna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989), p. 511-547. Zbl0696.34049MR1022305
  7. R.J. Di Perna, P.L. Lions, in preparation see also in Séminaire EDP 1988-1989, Ecole Polytechnique, Palaiseau, 1989. MR1032290
  8. D. Hoff, Global well-posedness of the Cauchy problem for nonisentropic gas dynamics with discontinuous data, J. Diff. Eq., 95 (1992), p.33-73. Zbl0762.35085MR1142276
  9. A.V. Kazhikov, V.V. Shelukhin, Unique global solution with respect to time of the initial boundary value problems for one dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), p. 273-282. Zbl0393.76043MR468593
  10. P.L. Lions, Existence globale pour les equations de Navier-Stokes compressibles isentropiques, C.R. Acad. Sci. Paris, 316 (1993), p. 1335-1340. Zbl0778.76086MR1226126
  11. P.L. Lions, Compacité des solutions des équations de Navier-Stokes compressibles isentropiques, C.R. Acad. Sci. Paris, 317 (1993),p. 115-120. Zbl0781.76072MR1228976
  12. P.L. Lions, Mathematical Topics in Fluid Mechanics, Oxford University Press (1996). Zbl0866.76002MR1422251
  13. D. Serre, Solutions faibles globales des equations de Navier-Stokes pour un fluide compressible, C.R. Acad. Sci. Paris, 303 (1986), p. 629-642. Zbl0597.76067MR867555
  14. V.A. Solonnikov, Solvability of the initial boundary value problem fpr the equation of a viscous compressible fluid, J. Sov. Math., 14 (1980), p.1120-1133. Zbl0451.35092
  15. V.A. Vaigant, An example of the nonexistence with respect to time of the global solution of Navier-Stokes equations for a compressible viscous barotropic fluid. Dokl. Akad. Nauk339 (1994), no. 2, p. 155-156. Zbl0877.35092MR1316938
  16. A. Valli, W.M. Zajaczkowski, Navier-Stokes equations for compressible fluids : global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys.103 (1986), p. 259-296. Zbl0611.76082MR826865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.