Ordinary differential equations, transport theory and Sobolev spaces.

R.J. DiPerna; P.L. Lions

Inventiones mathematicae (1989)

  • Volume: 98, Issue: 3, page 511-548
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

DiPerna, R.J., and Lions, P.L.. "Ordinary differential equations, transport theory and Sobolev spaces.." Inventiones mathematicae 98.3 (1989): 511-548. <http://eudml.org/doc/143741>.

@article{DiPerna1989,
author = {DiPerna, R.J., Lions, P.L.},
journal = {Inventiones mathematicae},
keywords = {global solutions; transport equation; kinetic Vlasov-type models; fluid mechanics},
number = {3},
pages = {511-548},
title = {Ordinary differential equations, transport theory and Sobolev spaces.},
url = {http://eudml.org/doc/143741},
volume = {98},
year = {1989},
}

TY - JOUR
AU - DiPerna, R.J.
AU - Lions, P.L.
TI - Ordinary differential equations, transport theory and Sobolev spaces.
JO - Inventiones mathematicae
PY - 1989
VL - 98
IS - 3
SP - 511
EP - 548
KW - global solutions; transport equation; kinetic Vlasov-type models; fluid mechanics
UR - http://eudml.org/doc/143741
ER -

Citations in EuDML Documents

top
  1. Catherine Giacomoni, Pierre Orenga, On the two-dimensional compressible isentropic Navier–Stokes equations
  2. François-Joseph Chatelon, Pierre Orenga, On a non-homogeneous shallow-water problem
  3. C. Bourdarias, Sur un système d'E.D.P. modélisant un processus d'adsorption isotherme d'un mélange gazeux
  4. Sébastien Novo, Antonín Novotný, Milan Pokorný, Some notes to the transport equation and to the Green formula
  5. Luigi Ambrosio, Myriam Lecumberry, Stefania Maniglia, Lipschitz regularity and approximate differentiability of the Diperna-Lions flow
  6. Alberto Bressan, An ill posed Cauchy problem for a hyperbolic system in two space dimensions
  7. M Hauray, On two-dimensional hamiltonian transport equations with Llocp coefficients
  8. Ping Zhang, Yuxi Zheng, Weak solutions to a nonlinear variational wave equation with general data
  9. Nicolas Lerner, Transport equations with partially B V velocities
  10. Nicolas Depauw, Non-unicité du transport par un champ de vecteurs presque B V

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.