Régularité des solutions des équations différentielles elliptiques

Léopoldo Nachbin

Séminaire Bourbaki (1962-1964)

  • Volume: 8, page 227-237
  • ISSN: 0303-1179

How to cite

top

Nachbin, Léopoldo. "Régularité des solutions des équations différentielles elliptiques." Séminaire Bourbaki 8 (1962-1964): 227-237. <http://eudml.org/doc/109659>.

@article{Nachbin1962-1964,
author = {Nachbin, Léopoldo},
journal = {Séminaire Bourbaki},
keywords = {partial differential equations},
language = {fre},
pages = {227-237},
publisher = {Société Mathématique de France},
title = {Régularité des solutions des équations différentielles elliptiques},
url = {http://eudml.org/doc/109659},
volume = {8},
year = {1962-1964},
}

TY - JOUR
AU - Nachbin, Léopoldo
TI - Régularité des solutions des équations différentielles elliptiques
JO - Séminaire Bourbaki
PY - 1962-1964
PB - Société Mathématique de France
VL - 8
SP - 227
EP - 237
LA - fre
KW - partial differential equations
UR - http://eudml.org/doc/109659
ER -

References

top
  1. [1] de Giorgi ( E.). - Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sc. Torino, Cl. Sc. fis. nat., Sério 3, t. 3, 1957, p. 25-43. Zbl0084.31901MR93649
  2. [2] Hörmander ( Lars). - Linear partial differential operators. - Berlin, Springer-Verlag, 1963 (Die Grundlehren der mathematischen Wissenschaften, 116). Zbl0108.09301MR161012
  3. [3] John ( F.) and Nirenberg ( L.). - On functions of bounded mean oscillation, Comm. pure and appl. Math., t. 14, 1961, p. 415-426. Zbl0102.04302MR131498
  4. [4] Litman ( W.), Stampacchia ( G.) and Weinberger ( H.F.). - Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola norml. sup. Pisa (à paraître). Zbl0116.30302
  5. [5] Morrey ( Charles B.). - Some recent developments in the theory of partial differential equations, Bull. Amer. math. Soc., t. 68, 1962, p. 279-297. Zbl0109.31701
  6. [6] Morrey ( Charles B.). - Des résultats récents du calcul des variations, Séminaire sur les équations aux dérivées partielles, 1961/62, n° 5, 62 p. (Collège de France). 
  7. [7] Moser ( Jörgen). - A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. pure and appl. Math., t. 13, 1960, p. 457-468. Zbl0111.09301MR170091
  8. [8] Moser ( Jörgen). - On Harnack's theorem for elliptic differential equations, Comm. pure and appl. Math., t. 14, 1961, p. 577-591. Zbl0111.09302MR159138
  9. [9] Moser ( Jörgen). - A Harnack inequality for parabolic differential equations, à paraître. Zbl0149.06902
  10. [10] Nash ( J.). - Continuity of solutions of parabolic and elliptic equations, Amer. J. of Math., t. 30, 1958, p. 931-954. Zbl0096.06902MR100158
  11. [11] Nirenberg ( L.). - Some aspects of linear and nonlinear partial differential equations, Proceedings of the International congress of mathematicians [1962. Stockholm] (à paraître). Zbl0161.07302MR176196
  12. [12] Schwartz ( Laurent). - Théorie des distributions, tomes 1 (2e éd.) et 2. - Paris, Hermann, 1951-1957 (Act. scient. et ind., 1091 = 1245 et 1122 ; Publ. Inst. math. Univ. Strasbourg, 9 et 10). Zbl0042.11405MR209834
  13. [13] Stampacchia ( Guido). - Equations elliptiques à données discontinues, Séminaire Schwartz, t. 5, 1960/61 : Equations aux dérivées partielles et interpolation, n° 4, 16 p. 
  14. [14] Stampacchia ( Guido). - Second order elliptic equations and boundary value problems, Proceedings of the International congress of mathematicians [1962. Stockholm] (à paraître). MR176198

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.