Des résultats récents du calcul des variations

C. B. Morrey

Séminaire Jean Leray (1961-1962)

  • page 1-62

How to cite


Morrey, C. B.. "Des résultats récents du calcul des variations." Séminaire Jean Leray (1961-1962): 1-62. <>.

author = {Morrey, C. B.},
journal = {Séminaire Jean Leray},
language = {fre},
pages = {1-62},
publisher = {Collège de France},
title = {Des résultats récents du calcul des variations},
url = {},
year = {1961-1962},

AU - Morrey, C. B.
TI - Des résultats récents du calcul des variations
JO - Séminaire Jean Leray
PY - 1961-1962
PB - Collège de France
SP - 1
EP - 62
LA - fre
UR -
ER -


  1. [1] C.B. Morrey, Jr., Existence and differentiability theorems for variational problems for multiple integrals, Partiel differential equations and continuum mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961, pp.241-270. Zbl0123.08005MR121690
  2. [2] --, Existence and differentiability theorems for the solutions of variational problems, Bull. Amer. Math. Soc.46 (1940), pp. 439-458. Zbl0063.04105MR2473JFM66.0476.02
  3. [3] --, Multiple intégral problems in the calculus of variations and related topics, Univ. of Calif. Publ. in Math., N.S.1 (1943), pp.1-130. Zbl0063.04107MR11537
  4. [4] --, Multiple intégral problems in the calculus of variations and related topics, Ann. Sc. Norm. Pisa III14 (1960), 1-61. Zbl0094.08104MR115117
  5. [5] O.A. Ladyzenskaya et N.N. Ural'tseva, Quasi-linear elliptic equations and variational problems with many independent variables, Russian Math. Surveys, London Math. Soc., Vol.16, n° 1, Jan-Feb. 1961, pp.17-91. Zbl0142.37602
  6. [6] L. Tonelli, Fondamenti del calcolo delle variazioni, Bologna, Zanichelli (3 vol.) JFM48.0581.09
  7. [7] --, Sur la semi-continuité des intégrales doubles du calcul des variations, Acta Math.53 (1929), pp.325-346. Zbl55.0899.02MR1555297JFM55.0899.02
  8. [8] --, L'estremo assoluto degli integrali doppi, Ann. Sc. Norm. Pisa (2) 3 (1933), pp. 89-130. Zbl0006.11805JFM59.0500.02
  9. [9] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. PisaIII13 (1959), pp.1-48. MR109940
  10. [10] R. Courant, Dirichlet's principal, conformal mapping, and minimal surfaces, Interscience Press, New-York (1950). Zbl0040.34603MR36317
  11. [11] C.B. Morrey, Jr., Quasi-convexity and the lower semi-continuity of multiple integrals, Pac. J. Math.2 (1952), pp.25-53. Zbl0046.10803MR54865
  12. [12] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc.101 (1961), pp.139-167. Zbl0102.04601MR138018
  13. [13] C.Y. Pauc, La méthode métrique en calcul des variations, Paris, Herman, 1941. En particulier p.54. Zbl0027.10502
  14. [14] J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure appl. Math.13 (1960), pp.457-468. Zbl0111.09301MR170091
  15. [15] G. Stampacchia, Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per equazioni del secondo ordine ellitiche, Ann. Sc. Norm. Sup., PisaIII12 (1958), pp.223-244. Zbl0082.09701MR125313
  16. [16] C.B. Morrey, Jr., Second order elliptic equations in several variables and Hölder continuity, Math. Zeit.72 (1959), pp.146-164. Zbl0094.07802MR120446
  17. [17] G. Stampacchia, Problemi al contorno ellittici, con dati discontinui, dotati di soluzioni hölderiane, Ann. Mat. Pura Appl. (IV), 51 (1960), pp. 1-38. Zbl0204.42001MR126601
  18. [18] P.D. Lax et A.N. Milgram, Parabolic equations, Ann. of Math. Studies n°33, Princeton University Press, 1954, pp.167-190, particulièrement p.169. Zbl0058.08703MR67317

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.