Couches d’Ekman pour les fluides tournants et la limite du système de Navier-Stokes vers celui d’Euler.
- [1] CEREMADE-UMR CNRS 7534, Université Paris Dauphine, Place de Lattre de Tassigny, 75775 Paris cedex 16, France
Séminaire Équations aux dérivées partielles (1998-1999)
- Volume: 1998-1999, page 1-13
Access Full Article
topHow to cite
topMasmoudi, Nader. "Couches d’Ekman pour les fluides tournants et la limite du système de Navier-Stokes vers celui d’Euler.." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-13. <http://eudml.org/doc/10966>.
@article{Masmoudi1998-1999,
affiliation = {CEREMADE-UMR CNRS 7534, Université Paris Dauphine, Place de Lattre de Tassigny, 75775 Paris cedex 16, France},
author = {Masmoudi, Nader},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {vanishing parameters; half-well-prepared data},
language = {fre},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Couches d’Ekman pour les fluides tournants et la limite du système de Navier-Stokes vers celui d’Euler.},
url = {http://eudml.org/doc/10966},
volume = {1998-1999},
year = {1998-1999},
}
TY - JOUR
AU - Masmoudi, Nader
TI - Couches d’Ekman pour les fluides tournants et la limite du système de Navier-Stokes vers celui d’Euler.
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 13
LA - fre
KW - vanishing parameters; half-well-prepared data
UR - http://eudml.org/doc/10966
ER -
References
top- L.Amerio, G.Prouse : Almost-periodic functions ans functional equations. The University Series in Higher Mathematics, Van Nostrand Reinhold Company Zbl0215.15701MR275061
- A. Babin, A. Mahalov, B. Nicolaenko : Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids.European J. Mech. B Fluids 15 (1996), no. 3, 291–300. Zbl0882.76096MR1400515
- A. Babin, A. Mahalov, B. Nicolaenko : Regularity and integrability of D Euler and Navier-Stokes equations for rotating fluids. Asymptot. Anal. 15 (1997), no. 2, 103–150. Zbl0890.35109MR1480996
- C. Bardos : Existence et unicité de l’équation l’Euler en dimension deux. Journal de Math. Pures et Appliquées 40(1972), 769-790. Zbl0249.35070
- T. Beale, A. Bourgeois : Validity of the quasigeostrophic model for large scale flow in the atmosphere and ocean, SIAM J. Math. Anal., (), . Zbl0811.35097MR1278890
- H.Bohr : Almost Periodic Functions. Chelsea Publishing Company MR20163
- R.E.Caflisch, M.Sammartino : Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space preprint. MR1461106
- J.-Y. Chemin : A propos d’un problème de pénalisation de type antisymétrique, J. Math. Pures Appl. (9) 76 (1997), no. 9, 739–755. Zbl0896.35103
- T. Colin, P. Fabrie : Rotating fluid at high Rossby number driven by a surface stress : existence and convergence, preprint, . Zbl1023.76593MR1751425
- Colin, P. Fabrie : Équations de Navier-Stokes -D avec force de Coriolis et viscosité verticale évanescente. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 3, 275–280. Zbl0882.76098MR1438399
- B. Desjardins, E. Grenier, Derivation of the quasigeostrophic potential vorticity equations. to appear in Advances in Diff. Equations. Zbl0967.76096
- P. Embid, A. Majda : Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Differential Equations, , (1996), . Zbl0849.35106MR1387463
- V.W. Ekman : On the influence of the earth’s rotation on ocean currents. Arkiv. Matem., Astr. Fysik, Stockholm () .
- I. Gallagher, Un résultat de stabilité pour les solutions faibles des équations des fluides tournants, Notes aux Comptes-Rendus de l’Académie des Sciences de Paris, ( 324), Série 1, 1996, pages 183–186. Zbl0878.76081
- H.P.Greenspan : The theory of rotating fluids, Cambridge monographs on mechanics and applied mathematics , Zbl0182.28103
- E. Grenier, Oscillatory perturbations of the Navier Stokes equations. Journal de Maths Pures et Appl. (), no. , p. . Zbl0885.35090MR1465607
- E. Grenier, N.Masmoudi : Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations , 22(5-6),(1997) 953-975 Zbl0880.35093MR1452174
- T.Kato : Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. Zbl0559.35067
- T.Kato : Non-stationary flows of viscous and ideal fluids in , J.Functional Analysis 9 (1972), 296-305. Zbl0229.76018MR481652
- J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Matematica, 63, 1933, pages 193–248. Zbl59.0763.02
- J.-L. Lions, R. Temam, S. Wang : Modèles et analyse mathématiques du système Océan/Atmosphère C.R.Acad.Sci.Paris Sér. I Math, C.R.Acad.Sci.Paris Sér. I MathC.R.Acad.Sci.Paris Sér. I Math.
- J.-L. Lions, R. Temam et S. Wang, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, 5, 1992, pages 237–288. Zbl0746.76019MR1158375
- J.-L. Lions, R. Temam et S. Wang, Geostrophic asympotics of the primitive equations of the atmosphere, Topological Methods in Non Linear Analysis, 4, 1994, pages 1–35. Zbl0846.35106MR1350974
- P.L. Lions, Mathematical Topics in Fluid Dynamics, Vol. Incompressible Models, Oxford University Press. Zbl0866.76002MR1422251
- P.L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. (), p. 585-627. Zbl0909.35101MR1628173
- A. Majda, T. Esteban :A two-dimensional model for quasigeostrophic flow : comparison with the two-dimensional Euler flow. Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995). Phys. D 98 (1996), no. 2-4, 515–522. Zbl0899.76105MR1422288
- N. Masmoudi, The Euler limit of the Navier Stokes equations, and rotating fluids with boundary, Arch. Rational Mech. Anal142 (1998) p. . Zbl0915.76017MR1645962
- N. Masmoudi, Ekman layers of rotating fluids, the case of general initial data, to appear in Communications in Pure and Applied Mathematics . Zbl1047.76124MR1733696
- J. Pedlovsky : Geophysical fluid dynamics, Springer, . Zbl0713.76005
- J. Rauch : Boundary value problems as limits of problems in all space, Séminaire Goulaouic-Schwartz, Ecole Polytechnique, exposé n.3,1978. Zbl0435.35052MR557514
- S. Schochet : Fast singular limits of hyperbolic PDEs. J. Diff. Equ. (1994) . Zbl0838.35071MR1303036
- H.Swann, The convergence with vanishing viscosity of non-stationary Navier-Stokes flow to ideal flow in Trans. Amer. Math. Soc 157 (1971), 373-397. Zbl0218.76023MR277929
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.