The wave equation with oscillating density : observability at low frequency

Gilles Lebeau[1]

  • [1] Centre de Mathématiques, École Polytechnique, UMR 7640 CNRS, 91128 Palaiseau Cedex, France

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-11

How to cite

top

Lebeau, Gilles. "The wave equation with oscillating density : observability at low frequency." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-11. <http://eudml.org/doc/10967>.

@article{Lebeau1998-1999,
affiliation = {Centre de Mathématiques, École Polytechnique, UMR 7640 CNRS, 91128 Palaiseau Cedex, France},
author = {Lebeau, Gilles},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The wave equation with oscillating density : observability at low frequency},
url = {http://eudml.org/doc/10967},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Lebeau, Gilles
TI - The wave equation with oscillating density : observability at low frequency
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 11
LA - eng
UR - http://eudml.org/doc/10967
ER -

References

top
  1. M. Avellaneda, C. Bardos, J. Rauch, Contrôlabilité, exacte, homogénéisation et localisation d’ondes dans un milieu non-homogène, Asymptotic Analysis 5 (1992), p. 481-484. Zbl0763.93006
  2. N. Burq, G. Lebeau, Mesures de défaut de compacité ; Applications au système de Lami, Preprint. MR1872422
  3. C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control and Optimization 30/5 (1992), p. 1024-1075. Zbl0786.93009MR1178650
  4. C. Castro,Boundary controllability of the one dimensional wave equation with rapidly oscillating density, preprint. Zbl0940.93016MR1715339
  5. C. Castro, E. Zuazua, Contrôle de l’équation des ondes à densité rapidement oscillante à une dimension d’espace, Cr. Acad. Sci. Paris 324 (1997), p. 1237-1242. Zbl1007.93036
  6. P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. Journal 71/2 (1993) p. 559-607. Zbl0788.35103MR1233448
  7. G. Lebeau, Contrôle de l’équation de Schrödinger, Journal de Math. Pures et Appl. 71 (1993), p. 267-291. Zbl0838.35013
  8. G. Lebeau, Equation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, (1996),A.Boutet de Monvel and V.Marchenko (eds), Kluwer Academic Publishers p. 73-109. Zbl0863.58068MR1385677
  9. R. Melrose, J. Sjöstrand, Singularities of boundary value problems I,II, CPAM 31 (1978), p. 593-617, 35 (1982), p. 129-168. Zbl0546.35083MR492794

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.