Théorie de la diffusion pour le modèle P ( ϕ ) 2 en théorie des champs

Christian Gérard[1]

  • [1] Centre de Mathématiques, UMR 7640 CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-16

How to cite

top

Gérard, Christian. "Théorie de la diffusion pour le modèle $P(\varphi )_{2}$ en théorie des champs." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-16. <http://eudml.org/doc/10969>.

@article{Gérard1998-1999,
affiliation = {Centre de Mathématiques, UMR 7640 CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France},
author = {Gérard, Christian},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Théorie de la diffusion pour le modèle $P(\varphi )_\{2\}$ en théorie des champs},
url = {http://eudml.org/doc/10969},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Gérard, Christian
TI - Théorie de la diffusion pour le modèle $P(\varphi )_{2}$ en théorie des champs
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/10969
ER -

References

top
  1. Amrein, W., Boutet de Monvel, A., Georgescu, W. : C 0 -Groups, Commutator Methods and Spectral Theory of N -Body Hamiltonians, Birkhäuser, Basel-Boston-Berlin, 1996 Zbl0962.47500
  2. Dereziński, J., Gérard, C. : Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11 (4) (1999) p 383-450 Zbl1044.81556MR1682684
  3. Dereziński, J., Gérard, C. : Spectral and scattering theory of spacially cut-off P ( ϕ ) 2 Hamiltonians, Preprint Ecole Polytechnque, 1998. Zbl1082.81518MR1782144
  4. Glimm, J., Jaffe, A. : Boson quantum field theory models, in Mathematics of Contemporary Physics R. Streater ed. (1972) Academic Press Zbl0191.27101MR674511
  5. Glimm, J., Jaffe, A. : A λ φ 4 quantum field theory without cutoffs I, Phys. Rev. 176 (1968) 1945-1951 Zbl0177.28203MR247845
  6. Høgh-Krohn, R. : On the spectrum of the space cutoff : P ( ϕ ) : Hamiltonian in 2 space-time dimensions, Comm. Math. Phys. 21 (1971) 256-260 MR289074
  7. Nelson, E. : A quartic interaction in 2 dimensions, in Mathematical theory of elementary particles, R. Goodman, I. Segal eds, MIT Press Cambridge 1966 MR210416
  8. Rosen, L. : A λ φ 2 n field theory without cutoffs. Comm. Math. Phys. 16 1970 157–183 Zbl0187.25701MR270671
  9. Rosen, L. : The ( φ 2 n ) 2 Quantum Field Theory : Higher Order Estimates, Comm. Pure Appl. Math. 24 (1971), 417-457 MR287840
  10. S. Schweber : An Introduction to Relativistic Quantum Field Theory, Row, Peterson and Co, 1961. Zbl0111.43102MR127796
  11. Segal, I. : Construction of non linear local quantum processes I, Ann. Math. 92 (1970) 462-481 Zbl0213.40904MR272306
  12. Segal, I. : Construction of non linear local quantum processes II, Inv. Math. 14 (1971) 211-241 Zbl0221.47023MR295695
  13. Simon, B. : The P ( φ ) 2 Euclidean (Quantum) Field Theory, Princeton University Press, 1974 Zbl1175.81146MR489552
  14. Simon, B : Studying spatially cutoff ( ϕ ) 2 2 n Hamiltonians, in Statistical Mechanics and Field Theory R.N. Sen and C. Weil eds ,New York, Halsted Press, 1972 Zbl0271.47015
  15. Simon, B. : Continuum embedded eigenvalues in a spatially cutoff P ( ϕ ) 2 field theory, Proc. A.M.S. 35 (1972) 223-226. MR297265
  16. Simon, B., Høgh-Krohn, R. : Hypercontractive Semigroups and Two dimensional Self-Coupled Bose Fields, J. Funct. Anal. 9 (1972) 121-180. Zbl0241.47029MR293451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.