Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1

Alexander Fedotov[1]; Frédéric Klopp[2]

  • [1] Department of Mathematical Physics, St Petersburg State University, 1, Ulianovskaja, 198904 St Petersburg-Petrodvoretz, Russi
  • [2] Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-14

How to cite

top

Fedotov, Alexander, and Klopp, Frédéric. "Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-14. <http://eudml.org/doc/10978>.

@article{Fedotov1998-1999,
affiliation = {Department of Mathematical Physics, St Petersburg State University, 1, Ulianovskaja, 198904 St Petersburg-Petrodvoretz, Russi; Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France},
author = {Fedotov, Alexander, Klopp, Frédéric},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1},
url = {http://eudml.org/doc/10978},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Fedotov, Alexander
AU - Klopp, Frédéric
TI - Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 14
LA - eng
UR - http://eudml.org/doc/10978
ER -

References

top
  1. S. Aubry and G. André. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc., 3, 133-164 1980. Zbl0943.82510MR626837
  2. J. Avron and B. Simon. Almost periodic Schrödinger operators, II. the integrated density of states. Duke Mathematical Journal, 50:369–391, 1983. Zbl0544.35030MR700145
  3. J. Bellissard, R. Lima, and D. Testard. Metal-insulator transition for the Almost Mathieu model. Communications in Mathematical Physics, 88:207–234, 1983. Zbl0542.35059MR696805
  4. V. Buslaev and A. Fedotov. Monodromization and Harper equation. In Séminaires d’équations aux dérivées partielles, volume XXI, Palaiseau, 1994. Ecole Polytechnique. Zbl0880.34082
  5. R. Carmona and J. Lacroix. Spectral Theory of Random Schrödinger Operators. Birkhäuser, Basel, 1990. Zbl0717.60074MR1102675
  6. H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon. Schrödinger Operators. Springer Verlag, Berlin, 1987. Zbl0619.47005MR883643
  7. M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
  8. L. H. Eliasson. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Mathematica, 179:153–196, 1997. Zbl0908.34072MR1607554
  9. L. H. Eliasson. Reducibility and point spectrum for linear quasi-periodic skew products. In Proceedings of the ICM 1998,Berlin, volume II, pages 779–787, 1998. Zbl0901.34043MR1648125
  10. A. Fedotov and F. Klopp. Anderson transitions for quasi-periodic Schrödinger operators in dimension 1. in progress. Zbl1004.81008
  11. A. Fedotov and F. Klopp. A complex WKB analysis for adiabatic problems. in progress. Zbl1001.34082
  12. A. Fedotov and F. Klopp. The monodromy matrix for one-dimensional adiabatic quasi-periodic Schrödinger operators I. in progress. Zbl1101.34069
  13. A. Fedotov and F. Klopp. The monodromy matrix for one-dimensional adiabatic quasi-periodic Schrödinger operators II. in progress. Zbl1101.34069
  14. A. Fedotov and F. Klopp. The monodromy matrix for a family of almost periodic equations in the adiabatic case. Preprint, Fields Institute, Toronto, 1997. 
  15. D. Gilbert and D. Pearson. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. Journal of Mathematical Analysis and its Applications, 128:30–56, 1987. Zbl0666.34023MR915965
  16. B. Helffer and J. Sjöstrand. Analyse semi-classique pour l’équation de Harper. Mémoires de la Société Mathématique de France, 34, 1988. Zbl0714.34130
  17. B. Helffer and J. Sjöstrand. Semi-classical analysis for Harper’s equation III. Cantor structure of the spectrum. Mémoires de la Société Mathématique de France, 39, 1989. Zbl0725.34099
  18. H. Hiramoto and M. Kohmoto. Electronic spectral and wavefunction properties of one-dimensional quasi-periodic systems: a scaling approach. International Journal of Modern Physics B, 164(3–4):281–320, 1992. MR1152689
  19. T. Janssen. Aperiodic Schrödinger operators. In R. Moody, editor, The Mathematics of Long-Range Aperiodic Order, pages 269–306. Kluwer, 1997. Zbl0883.47087MR1460027
  20. S. Jitomirskaya. Almost everything about the almost Mathieu operator. II. In XIth International Congress of Mathematical Physics (Paris, 1994), pages 373–382, Cambridge, 1995. Internat. Press. Zbl1052.82539MR1370694
  21. P. Kargaev and E. Korotyaev. Effective masses and conformal mappings. Communications in Mathematical Physics, 169:597–625, 1995. Zbl0828.34076MR1328738
  22. Y. Last. Almost everything about the almost Mathieu operator. I. In XIth International Congress of Mathematical Physics (Paris, 1994), pages 366–372, Cambridge, 1995. Internat. Press. Zbl1052.82541MR1370693
  23. Y. Last and B. Simon. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operator. Technical report, Caltech, 1996. 
  24. V. Marchenko and I. Ostrovskii. A characterization of the spectrum of Hill’s equation. Math. USSR Sbornik, 26:493–554, 1975. Zbl0343.34016
  25. H. McKean and P. van Moerbeke. The spectrum of Hill’s equation. Inventiones Mathematicae, 30:217–274, 1975. Zbl0319.34024
  26. L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. Zbl0752.47002MR1223779
  27. V. Sprindzhuk. Metric theory of Diophantine approximation. Wiley, New-York, 1979. Zbl0482.10047MR548467
  28. E.C. Titschmarch. Eigenfunction expansions associated with second-order differential equations. Part II. Clarendon Press, Oxford, 1958. Zbl0097.27601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.