Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1
Alexander Fedotov[1]; Frédéric Klopp[2]
- [1] Department of Mathematical Physics, St Petersburg State University, 1, Ulianovskaja, 198904 St Petersburg-Petrodvoretz, Russi
- [2] Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France
Séminaire Équations aux dérivées partielles (1998-1999)
- Volume: 1998-1999, page 1-14
Access Full Article
topHow to cite
topFedotov, Alexander, and Klopp, Frédéric. "Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-14. <http://eudml.org/doc/10978>.
@article{Fedotov1998-1999,
affiliation = {Department of Mathematical Physics, St Petersburg State University, 1, Ulianovskaja, 198904 St Petersburg-Petrodvoretz, Russi; Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France},
author = {Fedotov, Alexander, Klopp, Frédéric},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1},
url = {http://eudml.org/doc/10978},
volume = {1998-1999},
year = {1998-1999},
}
TY - JOUR
AU - Fedotov, Alexander
AU - Klopp, Frédéric
TI - Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 14
LA - eng
UR - http://eudml.org/doc/10978
ER -
References
top- S. Aubry and G. André. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc., 3, 133-164 1980. Zbl0943.82510MR626837
- J. Avron and B. Simon. Almost periodic Schrödinger operators, II. the integrated density of states. Duke Mathematical Journal, 50:369–391, 1983. Zbl0544.35030MR700145
- J. Bellissard, R. Lima, and D. Testard. Metal-insulator transition for the Almost Mathieu model. Communications in Mathematical Physics, 88:207–234, 1983. Zbl0542.35059MR696805
- V. Buslaev and A. Fedotov. Monodromization and Harper equation. In Séminaires d’équations aux dérivées partielles, volume XXI, Palaiseau, 1994. Ecole Polytechnique. Zbl0880.34082
- R. Carmona and J. Lacroix. Spectral Theory of Random Schrödinger Operators. Birkhäuser, Basel, 1990. Zbl0717.60074MR1102675
- H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon. Schrödinger Operators. Springer Verlag, Berlin, 1987. Zbl0619.47005MR883643
- M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
- L. H. Eliasson. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Mathematica, 179:153–196, 1997. Zbl0908.34072MR1607554
- L. H. Eliasson. Reducibility and point spectrum for linear quasi-periodic skew products. In Proceedings of the ICM 1998,Berlin, volume II, pages 779–787, 1998. Zbl0901.34043MR1648125
- A. Fedotov and F. Klopp. Anderson transitions for quasi-periodic Schrödinger operators in dimension 1. in progress. Zbl1004.81008
- A. Fedotov and F. Klopp. A complex WKB analysis for adiabatic problems. in progress. Zbl1001.34082
- A. Fedotov and F. Klopp. The monodromy matrix for one-dimensional adiabatic quasi-periodic Schrödinger operators I. in progress. Zbl1101.34069
- A. Fedotov and F. Klopp. The monodromy matrix for one-dimensional adiabatic quasi-periodic Schrödinger operators II. in progress. Zbl1101.34069
- A. Fedotov and F. Klopp. The monodromy matrix for a family of almost periodic equations in the adiabatic case. Preprint, Fields Institute, Toronto, 1997.
- D. Gilbert and D. Pearson. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. Journal of Mathematical Analysis and its Applications, 128:30–56, 1987. Zbl0666.34023MR915965
- B. Helffer and J. Sjöstrand. Analyse semi-classique pour l’équation de Harper. Mémoires de la Société Mathématique de France, 34, 1988. Zbl0714.34130
- B. Helffer and J. Sjöstrand. Semi-classical analysis for Harper’s equation III. Cantor structure of the spectrum. Mémoires de la Société Mathématique de France, 39, 1989. Zbl0725.34099
- H. Hiramoto and M. Kohmoto. Electronic spectral and wavefunction properties of one-dimensional quasi-periodic systems: a scaling approach. International Journal of Modern Physics B, 164(3–4):281–320, 1992. MR1152689
- T. Janssen. Aperiodic Schrödinger operators. In R. Moody, editor, The Mathematics of Long-Range Aperiodic Order, pages 269–306. Kluwer, 1997. Zbl0883.47087MR1460027
- S. Jitomirskaya. Almost everything about the almost Mathieu operator. II. In XIth International Congress of Mathematical Physics (Paris, 1994), pages 373–382, Cambridge, 1995. Internat. Press. Zbl1052.82539MR1370694
- P. Kargaev and E. Korotyaev. Effective masses and conformal mappings. Communications in Mathematical Physics, 169:597–625, 1995. Zbl0828.34076MR1328738
- Y. Last. Almost everything about the almost Mathieu operator. I. In XIth International Congress of Mathematical Physics (Paris, 1994), pages 366–372, Cambridge, 1995. Internat. Press. Zbl1052.82541MR1370693
- Y. Last and B. Simon. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operator. Technical report, Caltech, 1996.
- V. Marchenko and I. Ostrovskii. A characterization of the spectrum of Hill’s equation. Math. USSR Sbornik, 26:493–554, 1975. Zbl0343.34016
- H. McKean and P. van Moerbeke. The spectrum of Hill’s equation. Inventiones Mathematicae, 30:217–274, 1975. Zbl0319.34024
- L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. Zbl0752.47002MR1223779
- V. Sprindzhuk. Metric theory of Diophantine approximation. Wiley, New-York, 1979. Zbl0482.10047MR548467
- E.C. Titschmarch. Eigenfunction expansions associated with second-order differential equations. Part II. Clarendon Press, Oxford, 1958. Zbl0097.27601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.