Page 1 Next

Displaying 1 – 20 of 116

Showing per page

A trace formula for resonances and application to semi-classical Schrödinger operators

Johannes Sjöstrand (1996/1997)

Séminaire Équations aux dérivées partielles

On décrit une formule de trace [S] pour les résonances, qui est valable en toute dimension et pour les perturbations à longue portée du Laplacien. On établit une nouvelle application à l’éxistence de nombreuses résonances pour des opérateurs de Schrödinger semi-classiques.

Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

Soeren Fournais, Bernard Helffer (2006)

Annales de l’institut Fourier

Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important...

Accurate WKB Approximation for a 1D Problem with Low Regularity

Nier, F. (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 34L40, 65L10, 65Z05, 81Q20.This article is concerned with the analysis of the WKB expansion in a classically forbidden region for a one dimensional boundary value Schrodinger equation with a non smooth potential. The assumed regularity of the potential is the one coming from a non linear problem and seems to be the critical one for which a good exponential decay estimate can be proved for the first remainder term. The treatment of the boundary conditions brings...

Asymptotic Analysis of a Schrödinger-Poisson System with Quantum Wells and Macroscopic Nonlinearities in Dimension 1

Faraj, A. (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35Q02, 35Q05, 35Q10, 35B40.We consider the stationary one dimensional Schrödinger-Poisson system on a bounded interval with a background potential describing a quantum well. Using a partition function which forces the particles to remain in the quantum well, the limit h®0 in the nonlinear system leads to a uniquely solved nonlinear problem with concentrated particle density. It allows to conclude about the convergence of the solution.

Currently displaying 1 – 20 of 116

Page 1 Next