Variétés de dimension infinie

Nicole Moulis

Séminaire Bourbaki (1969-1970)

  • Volume: 12, page 253-267
  • ISSN: 0303-1179

How to cite

top

Moulis, Nicole. "Variétés de dimension infinie." Séminaire Bourbaki 12 (1969-1970): 253-267. <http://eudml.org/doc/109781>.

@article{Moulis1969-1970,
author = {Moulis, Nicole},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {253-267},
publisher = {Springer-Verlag},
title = {Variétés de dimension infinie},
url = {http://eudml.org/doc/109781},
volume = {12},
year = {1969-1970},
}

TY - JOUR
AU - Moulis, Nicole
TI - Variétés de dimension infinie
JO - Séminaire Bourbaki
PY - 1969-1970
PB - Springer-Verlag
VL - 12
SP - 253
EP - 267
LA - fre
UR - http://eudml.org/doc/109781
ER -

References

top
  1. [1] Cz. Bessaga - Every infinite dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Pol. Sci. XIV-1 (1966), p. 27-31. Zbl0151.17703MR193646
  2. [2] J. Eells and K.D. Elworthy - Open embeddings of certain Banach manifolds, Ann. of Math., 91 (1970), p. 465-485. Zbl0198.28804MR263120
  3. [3] K.D. Elworthy - Fredholm maps and GLC(E) structures, Thesis, Annoncement Bull. A. M. S., 74 (1968), p. 582-586. Zbl0159.25102MR224113
  4. [4] K.D. Elworthy - Structure Fredholm sur les variétés Banachiques, Proceedings du Séminaire de Mathématiques Supérieures, Montréal, Juillet 1969, à paraître. Zbl0237.58007MR397771
  5. [5] N.H. Kuiper and D. Burghelea - Hilbert manifolds, Ann. of Math., 90 (1969), p. 379-417. Zbl0195.53501MR253374
  6. [6] N.H. Kuiper and B. Terpstra - Differentiable closed embeddings of Banach manifolds, Conference in honor of G. de Rham, Springer-Verlag (1970), p. 118-125. Zbl0193.24001MR264709
  7. [7] B. Mazur - Stable equivalence of differentiable manifolds, Bull. A. M. S., 67 (1961), p. 377-384. Zbl0107.17002MR130697
  8. [8] N. Moulis - Sur les variétés hilbertiennes et les fonctions non dégénérées, Indagationes Mathematicae, 30 (1968), p. 497-511. Zbl0167.50204MR254876
  9. [9] K.K. Mukherjea - Fredholm structures and cohomology, Thesis, Cornell University, 1968. 
  10. [10] R. Palais - Morse theory on Hilbert manifolds, Topology2 (1963), p. 299-340. Zbl0122.10702MR158410

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.