Global Strichartz estimates for variable coefficient second order hyperbolic operators
- [1] Department of Mathematics, Northwestern University
Séminaire Équations aux dérivées partielles (1999-2000)
- Volume: 1999-2000, page 1-15
Access Full Article
topHow to cite
topTataru, Daniel. "Global Strichartz estimates for variable coefficient second order hyperbolic operators." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-15. <http://eudml.org/doc/10984>.
@article{Tataru1999-2000,
affiliation = {Department of Mathematics, Northwestern University},
author = {Tataru, Daniel},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {asymptotically flat coefficients; scale invariance; nontrapping condition},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Global Strichartz estimates for variable coefficient second order hyperbolic operators},
url = {http://eudml.org/doc/10984},
volume = {1999-2000},
year = {1999-2000},
}
TY - JOUR
AU - Tataru, Daniel
TI - Global Strichartz estimates for variable coefficient second order hyperbolic operators
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 15
LA - eng
KW - asymptotically flat coefficients; scale invariance; nontrapping condition
UR - http://eudml.org/doc/10984
ER -
References
top- Philip Brenner. On estimates for the wave-equation. Math. Z., 145(3):251–254, 1975. Zbl0321.35052MR387819
- Jean-Marc Delort. F.B.I. transformation. Springer-Verlag, Berlin, 1992. Second microlocalization and semilinear caustics. Zbl0760.35004MR1186645
- J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50–68, 1995. Zbl0849.35064MR1351643
- Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. Zbl0922.35028MR1646048
- Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65–130, 1993. Zbl0776.58037MR1168960
- Hart F. Smith. A parametrix construction for wave equations with coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998. Zbl0974.35068MR1644105
- Hart F. Smith and Christopher D. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729–737, 1994. Zbl0832.35018MR1306017
- Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705–714, 1977. Zbl0372.35001MR512086
- Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients iii. preprint, +/http://www.math.nwu/ tataru/nlw+. Zbl0990.35027
- Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, +/http://www.math.nwu/ tataru/nlw+. Zbl0988.35037MR1833146
- Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math., 122(2):349–376, 2000. Zbl0959.35125MR1749052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.