Global Strichartz estimates for variable coefficient second order hyperbolic operators

Daniel Tataru[1]

  • [1] Department of Mathematics, Northwestern University

Séminaire Équations aux dérivées partielles (1999-2000)

  • Volume: 1999-2000, page 1-15

How to cite

top

Tataru, Daniel. "Global Strichartz estimates for variable coefficient second order hyperbolic operators." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-15. <http://eudml.org/doc/10984>.

@article{Tataru1999-2000,
affiliation = {Department of Mathematics, Northwestern University},
author = {Tataru, Daniel},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {asymptotically flat coefficients; scale invariance; nontrapping condition},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Global Strichartz estimates for variable coefficient second order hyperbolic operators},
url = {http://eudml.org/doc/10984},
volume = {1999-2000},
year = {1999-2000},
}

TY - JOUR
AU - Tataru, Daniel
TI - Global Strichartz estimates for variable coefficient second order hyperbolic operators
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 15
LA - eng
KW - asymptotically flat coefficients; scale invariance; nontrapping condition
UR - http://eudml.org/doc/10984
ER -

References

top
  1. Philip Brenner. On L p - L p estimates for the wave-equation. Math. Z., 145(3):251–254, 1975. Zbl0321.35052MR387819
  2. Jean-Marc Delort. F.B.I. transformation. Springer-Verlag, Berlin, 1992. Second microlocalization and semilinear caustics. Zbl0760.35004MR1186645
  3. J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50–68, 1995. Zbl0849.35064MR1351643
  4. Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. Zbl0922.35028MR1646048
  5. Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65–130, 1993. Zbl0776.58037MR1168960
  6. Hart F. Smith. A parametrix construction for wave equations with C 1 , 1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998. Zbl0974.35068MR1644105
  7. Hart F. Smith and Christopher D. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729–737, 1994. Zbl0832.35018MR1306017
  8. Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705–714, 1977. Zbl0372.35001MR512086
  9. Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients iii. preprint, +/http://www.math.nwu/ tataru/nlw+. Zbl0990.35027
  10. Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, +/http://www.math.nwu/ tataru/nlw+. Zbl0988.35037MR1833146
  11. Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math., 122(2):349–376, 2000. Zbl0959.35125MR1749052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.