A parametrix construction for wave equations with coefficients
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 3, page 797-835
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.N. BONY, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Scient. E.N.S., 14 (1981), 209-246. Zbl0495.35024MR84h:35177
- [2] R.R. COIFMAN and Y. MEYER, Au delà des opérateurs pseudo-differentiels, Astérisque, Soc. Math. France, 57 (1978). Zbl0483.35082MR81b:47061
- [3] A. CORDOBA and C. FEFFERMAN, Wave packets and Fourier integral operators, Comm. Partial Differential Equations, 3-11 (1978), 979-1005. Zbl0389.35046MR80a:35117
- [4] C. FEFFERMAN, A note on spherical summation multipliers, Israel J. Math., 15 (1973), 44-52. Zbl0262.42007MR47 #9160
- [5] A.E. HURD and D.H. SATTINGER, Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients, Trans. Amer. Math. Soc., 132 (1968), 159-174. Zbl0155.16401MR36 #5509
- [6] Y. MEYER, Ondelettes et Opérateurs II, Opérateurs de Calderón-Zygmund, Hermann, Paris, 1990. Zbl0694.41037
- [7] H. PECHER, Nonlinear small data scattering for the wave and Klein-Gordan equations, Math. Z., 185 (1984), 261-270. Zbl0538.35063MR85h:35165
- [8] A. SEEGER, C.D. SOGGE and E.M. STEIN, Regularity properties of Fourier integral operators, Annals Math., 133 (1991), 231-251. Zbl0754.58037MR92g:35252
- [9] H. SMITH, A Hardy space for Fourier integral operators, Jour. Geom. Anal., to appear. Zbl1031.42020
- [10] H. SMITH and C. SOGGE, On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett., 1 (1994), 729-737. Zbl0832.35018MR95h:35156
- [11] H. SMITH and C. SOGGE, On the critical semilinear wave equation outside convex obstacles, Jour. Amer. Math. Soc., 8 (1995), 879-916. Zbl0860.35081MR95m:35128
- [12] E. M. STEIN, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993. Zbl0821.42001MR95c:42002
- [13] R. STRICHARTZ, A priori estimates for the wave equation and some applications, J. Funct. Analysis, 5 (1970), 218-235. Zbl0189.40701MR41 #2231
- [14] R. STRICHARTZ, Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation, Duke Math. J., 44 (1977), 705-714. Zbl0372.35001MR58 #23577
Citations in EuDML Documents
top- Sergiu Klainerman, Igor Rodnianski, Regularity and geometric properties of solutions of the Einstein-Vacuum equations
- Sergiu Klainerman, Igor Rodnianski, Jeremie Szeftel, Around the bounded curvature conjecture in general relativity
- Sergiu Klainerman, A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations
- Daniel Tataru, The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation
- Matthew D. Blair, Hart F. Smith, Christopher D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary
- Hart F. Smith, Christopher D. Sogge, Null form estimates for symbols and local existence for a quasilinear dirichlet-wave equation
- Oana Ivanovici, Dispersive and Strichartz estimates for the wave equation in domains with boundary
- Sergiu Klainerman, Igor Rodnianski, Jérémie Szeftel, The resolution of the bounded curvature conjecture in general relativity
- Daniel Tataru, Global Strichartz estimates for variable coefficient second order hyperbolic operators
- Thomas Alazard, Nicolas Burq, Claude Zuily, Strichartz estimates for water waves