Courbes de genre géométrique borné sur une surface de type général
Séminaire Bourbaki (1977-1978)
- Volume: 20, page 233-247
- ISSN: 0303-1179
Access Full Article
topHow to cite
topDeschamps, Mireille. "Courbes de genre géométrique borné sur une surface de type général." Séminaire Bourbaki 20 (1977-1978): 233-247. <http://eudml.org/doc/109921>.
@article{Deschamps1977-1978,
author = {Deschamps, Mireille},
journal = {Séminaire Bourbaki},
keywords = {fibre; surface of general type; curves with bounded genus; algebraic foliation},
language = {fre},
pages = {233-247},
publisher = {Springer-Verlag},
title = {Courbes de genre géométrique borné sur une surface de type général},
url = {http://eudml.org/doc/109921},
volume = {20},
year = {1977-1978},
}
TY - JOUR
AU - Deschamps, Mireille
TI - Courbes de genre géométrique borné sur une surface de type général
JO - Séminaire Bourbaki
PY - 1977-1978
PB - Springer-Verlag
VL - 20
SP - 233
EP - 247
LA - fre
KW - fibre; surface of general type; curves with bounded genus; algebraic foliation
UR - http://eudml.org/doc/109921
ER -
References
top- [1] S.Ju. Arakelov - Familles of algebraic curves with fixed degeneracies, Math. U.S.S.R. Isvestija, vol. 5, 1971, n° 6, p. 1277-1302. Zbl0248.14004MR321933
- [2] F.A. Bogomolov - Notes distribuées au C.I.M.E., Juillet 1977.
- [3] E. Bombieri and D. Husemoller - Classification and embeddings of surfaces, Proc. of symposia in pure math., vol. 29, Algebraic geometry, Arcata1974, p. 329-420. Zbl0326.14009MR506292
- [4] M. de Franchis - Sulle superficie algebriche le quali contengono un fascio irrazionale de curve, Rendic. Palermo, 20, 1905, p. 49 . Zbl36.0696.01JFM36.0696.01
- [5] J.-P. Jouanolou - Hypersurfaces solutions d'une équation de Pfaff analytique, Mathematische Annalen, n° 232, 1978, p. 239-248. Zbl0354.34007MR481129
- [6] A. Kas - Weierstrass normal forms and invariants of elliptic surfaces, Trans. of Amer. Math. Soc., vol. 225, 1977, p. 259-266. Zbl0402.14014MR422285
- [7] K. Kodaira - On compact analytic surfaces II, Annals of Math., n° 77, 1963, p. 563-626. Zbl0118.15802
- [8] K. Kodaira - Pluricanonical systems on algebraic surfaces of general type, Proc. of the Nat. Amer. Soc., vol. 39, 1953,
- [9] Y. Miyaoka - On the Chern numbers of surfaces of general type, Invent. Math., vol. 42, 1977, p. 225-237. Zbl0374.14007MR460343
- [10] D. Mumford - Geometric invariant theory, Springer-Verlag, Berlin, 1965. Zbl0147.39304MR214602
- [11] D. Mumford - Projective invariants of projective structures and applications, Proc. Intern. Cong. Math. Stockholm, 1962, p. 526-530. Zbl0154.20702MR175899
- [12] Y. Nakai - The existence of irrational pencils on algebraic varieties, Mem. of College of Sciences, Univ. of Kyoto, Series A, n° 29, 1955, p. 151-158. Zbl0065.14102MR98095
- [13] N.S. Narasimhan and C.S. Seshadri - Stable and unitary vector bundles on a compact Riemann surface, Annals of Math., vol. 82, 1965, p. 540-562. Zbl0171.04803MR184252
- [14] A.N. Parsin - Algebraic curves over function fields, Math. U.S.S.R. Isvestija, vol. 2, 1968, n° 5, p. 1145-1170.
- [15] C.P. Ramanujam - Supplement to the article "Remarks on the Kodaira Vanishing Theorem", Journ. of Indian Math. Soc., vol. 38, 1974, p. 121-124. Zbl0368.14005MR393048
- [16] M. Raynaud - Contre-exemple au "vanishing theorem" en caractéristique p , à paraître. Zbl0441.14006
- [17] I.R. Schafarevitch - Algebraic surfaces, Proc. of the Steklov Institute of math., n° 75, 1965.
- [18] A. Seidenberg - Reduction of singularities of the differential equation Ady = Bdx , Amer. Journ. of Math.,n° 90, 1968, p. 248-269. Zbl0159.33303MR220710
- [19] C.S. Seshadri - Space of unitary vector bundles on a compact Riemann surface, Annals of Math., n° 85, 1967, p. 303-336. Zbl0173.23001MR233371
- [20] K. Ueno - Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer-Verlag. Zbl0299.14007MR506253
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.