About the Hyperbolicity of Complete Intersections

Simone Diverio

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 3, page 579-590
  • ISSN: 0392-4041

Abstract

top
This note is an extended version of a thirty minutes talk given at the “XIX Congresso dell'Unione Matematica Italiana”, held in Bologna from September 12th to September 17th, 2011. This was essentially a survey talk about connections between Kobayashi hyperbolicity properties and positivity properties of the canonical bundle of projective algebraic varieties.

How to cite

top

Diverio, Simone. "About the Hyperbolicity of Complete Intersections." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 579-590. <http://eudml.org/doc/294039>.

@article{Diverio2013,
abstract = {This note is an extended version of a thirty minutes talk given at the “XIX Congresso dell'Unione Matematica Italiana”, held in Bologna from September 12th to September 17th, 2011. This was essentially a survey talk about connections between Kobayashi hyperbolicity properties and positivity properties of the canonical bundle of projective algebraic varieties.},
author = {Diverio, Simone},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {579-590},
publisher = {Unione Matematica Italiana},
title = {About the Hyperbolicity of Complete Intersections},
url = {http://eudml.org/doc/294039},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Diverio, Simone
TI - About the Hyperbolicity of Complete Intersections
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 579
EP - 590
AB - This note is an extended version of a thirty minutes talk given at the “XIX Congresso dell'Unione Matematica Italiana”, held in Bologna from September 12th to September 17th, 2011. This was essentially a survey talk about connections between Kobayashi hyperbolicity properties and positivity properties of the canonical bundle of projective algebraic varieties.
LA - eng
UR - http://eudml.org/doc/294039
ER -

References

top
  1. BROTBEK, D., Hyperbolicity Related Problems for Complete Intersection Varieties, ArXiv e-prints, January 2011. MR3187623DOI10.1112/S0010437X13007458
  2. CANTAT, S., Deux exemples concernant une conjecture de Serge Lang, C. R. Acad. Sci. Paris Sér. I Math., 330, no. 7 (2000), 581-586. MR1760443DOI10.1016/S0764-4442(00)00226-3
  3. DEBARRE, O., Varieties with ample cotangent bundle, Compos. Math., 141, no. 6 (2005), 1445-1459. Zbl1086.14038MR2188444DOI10.1112/S0010437X05001399
  4. DEMAILLY, J.-P., Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry-Santa Cruz 1995, 285-360, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997. MR1492539DOI10.1090/pspum/062.2/1492539
  5. DEMAILLY, J.-P., Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., 7, no. 4 (2011), Special Issue: In memory of Eckart Viehweg, 1165-1207. Zbl1316.32014MR2918158DOI10.4310/PAMQ.2011.v7.n4.a6
  6. DEMAILLY, J.-P. - EL GOUL, J., Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math., 122, no. 3 (2000), 515-546. Zbl0966.32014MR1759887
  7. DESCHAMPS, M., Courbes de genre géométrique borné sur une surface de type général [d'après F. A. Bogomolov], Séminaire Bourbaki, 30e année (1977/78), Exp. No. 519, pp. 233-247, Lecture Notes in Math., 710, Springer, Berlin, 1979. MR554224
  8. DIVERIO, S., Existence of global invariant jet differentials on projective hypersurfaces of high degree, Math. Ann., 344, no. 2 (2009), 293-315. Zbl1166.32013MR2495771DOI10.1007/s00208-008-0306-4
  9. DIVERIO, S. - FERRETTI, A., On a conjecture of Oguiso about rational curves on Calabi-Yau threefolds, to appear on Comment. Math. Helv. Zbl1304.14049MR3177911DOI10.4171/CMH/315
  10. DIVERIO, S. - MERKER, J. - ROUSSEAU, E., Effective algebraic degeneracy, Invent. Math., 180, no. 1 (2010), 161-223. Zbl1192.32014MR2593279DOI10.1007/s00222-010-0232-4
  11. DIVERIO, S. - TRAPANI, S., A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree, J. Reine Angew. Math., 649 (2010), 55-61. Zbl1211.32015MR2746466DOI10.1515/CRELLE.2010.088
  12. EIN, L., Subvarieties of generic complete intersections, Invent. Math., 94, no. 1 (1988), 163-169. Zbl0701.14002MR958594DOI10.1007/BF01394349
  13. GREEN, M. - GRIFFITHS, P., Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), 41-74, Springer, New York-Berlin, 1980. MR609557
  14. HEATH-BROWN, D. R. - WILSON, P. M. H., Calabi-Yau threefolds with ρ > 13 , Math. Ann., 294, no. 1 (1992), 49-57. MR1180449DOI10.1007/BF01934312
  15. KOBAYASHI, S., Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318. Springer-Verlag, Berlin, 1998. MR1635983DOI10.1007/978-3-662-03582-5
  16. LANG, S., Higher dimensional diophantine problems, Bull. Amer. Math. Soc., 80 (1974), 779-787. Zbl0298.14014MR360464DOI10.1090/S0002-9904-1974-13516-0
  17. LANG, S., Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.), 14, no. 2 (1986), 159-205. MR828820DOI10.1090/S0273-0979-1986-15426-1
  18. MCQUILLAN, M., Diophantine approximations and foliations, Inst. Hautes Études Sci. Publ. Math. No. 87 (1998), 121-174. Zbl1006.32020MR1659270
  19. MCQUILLAN, M., Holomorphic curves on hyperplane sections of 3-folds, Geom. Funct. Anal., 9, no. 2 (1999), 370-392. Zbl0951.14014MR1692470DOI10.1007/s000390050091
  20. MERKER, J., Low pole order frames on vertical jets of the universal hypersurface, Ann. Inst. Fourier (Grenoble), 59, no. 3 (2009), 1077-1104. Zbl1172.32005MR2543663
  21. MORI, S. - MUKAI, S., The uniruledness of the moduli space of curves of genus 11; In Algebraic geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Math., pages 334-353. Springer, Berlin, 1983. MR726433DOI10.1007/BFb0099970
  22. OGUISO, K., On algebraic fiber space structures on a Calabi-Yau 3-fold, Internat. J. Math., 4, no. 3 (1993), 439-465. Zbl0793.14030MR1228584DOI10.1142/S0129167X93000248
  23. PĂUN, M., Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Math. Ann., 340, no. 4 (2008), 875-892. Zbl1137.32010MR2372741DOI10.1007/s00208-007-0172-5
  24. PETERNELL, T., Calabi-Yau manifolds and a conjecture of Kobayashi, Math. Z., 207, no. 2 (1991), 305-318. MR1109668DOI10.1007/BF02571390
  25. ROUSSEAU, E., Weak analytic hyperbolicity of generic hypersurfaces of high degree in 4 , Ann. Fac. Sci. Toulouse Math. (6), 16, no. 2 (2007), 369-383. Zbl1132.32010MR2331545
  26. SIU, Y.-T., Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel (Springer, Berlin, 2004), 543-566. Zbl1076.32011MR2077584
  27. SIU, Y.-T., Hyperbolicity of Generic High-Degree Hypersurfaces in Complex Projective Spaces, ArXiv e-prints, October 2012. MR3425387DOI10.1007/s00222-015-0584-x
  28. SIU, Y.-T. - YEUNG, S.-K., Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane, Invent. Math., 124, no. 1-3 (1996), 573- 618. MR1369429DOI10.1007/s002220050064
  29. VOISIN, C., On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom., 44, no. 1 (1996), 200-213. Zbl0883.14022MR1420353
  30. VOISIN, C., A correction: ``On a conjecture of Clemens on rational curves on hypersurfaces [J. Differential Geom. 44 (1996), no. 1, 200-213; MR1420353 (97j:14047)]'', J. Differential Geom., 49, no. 3 (1998), 601-611. Zbl0883.14022MR1669712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.