Algèbres auto-injectives de représentation finie

Pierre Gabriel

Séminaire Bourbaki (1979-1980)

  • Volume: 22, page 20-39
  • ISSN: 0303-1179

How to cite

top

Gabriel, Pierre. "Algèbres auto-injectives de représentation finie." Séminaire Bourbaki 22 (1979-1980): 20-39. <http://eudml.org/doc/109955>.

@article{Gabriel1979-1980,
author = {Gabriel, Pierre},
journal = {Séminaire Bourbaki},
keywords = {selfinjective algebras; finite dimensional algebra; indecomposable modules; simple modules; Dynkin diagrams},
language = {fre},
pages = {20-39},
publisher = {Springer-Verlag},
title = {Algèbres auto-injectives de représentation finie},
url = {http://eudml.org/doc/109955},
volume = {22},
year = {1979-1980},
}

TY - JOUR
AU - Gabriel, Pierre
TI - Algèbres auto-injectives de représentation finie
JO - Séminaire Bourbaki
PY - 1979-1980
PB - Springer-Verlag
VL - 22
SP - 20
EP - 39
LA - fre
KW - selfinjective algebras; finite dimensional algebra; indecomposable modules; simple modules; Dynkin diagrams
UR - http://eudml.org/doc/109955
ER -

References

top
  1. [1] Auslander M. : Representation theory of Artin algebras II, Comm. Algebra (1974), 269-310 Zbl0285.16029MR349747
  2. [2] Auslander M. and Retten I.. : Representation theory of algebras III, Comm. Algebra (1975),239-294. Zbl0331.16027
  3. [3] Auslander M. and Reiten I.. : Representation theory of algebras IV, Comm. Algebra (1977), 443-518. Zbl0396.16007MR439881
  4. [4] Auslander M. and Reiten I.. : Representation theory of algebras VI, Comm. Algebra (1978) Zbl0446.16027MR472919
  5. [5] Auslander M. and Reiten I.. : Stable equivalence of Artin algebras, Proc. Conf. on Orders, group rings and related topics, Springer Lecture Notes No 353,8-71. Zbl0276.16020MR335575
  6. [6] Bautista R.. : Irreducible maps and the radical of a category, preprint Zbl0594.16020MR551758
  7. [7] Bernstein I.N., Gel'fand I.M. and Ponomarjov V.A.: Coxeter functors and Gabriel's theorem, translated in Russian Math. Surveys28 (1973), 17-32. Zbl0279.08001
  8. [8] Bongartz K. : Zykellose Algebren sind nicht zügellos, Proceedings of the 2nd Int. Conf. on Rep. of Alg., Ottawa 1979, to appear in Springer Lecture Notes. Zbl0457.16020MR607150
  9. [9] Curtis C.W. and Reiner I.. : Representation Theory of Finite Groups and Associative Algebras, Wiley, New York1962. Zbl0131.25601MR144979
  10. [10] Dade E.C. : Blocks with cyclic defect groups, Ann. of Math.84 (1966), 20-48 Zbl0163.27202MR200355
  11. [11] Dlab V. and Ringel C.M. : Indecomposable representations of graphs and algebras, Memoirs Amer. Math. Soc. No 173, Providence (1976). Zbl0332.16015MR447344
  12. [12] Gabriel P. : Des catégories abéliennes, Bull. Soc. Math. Fr. (1962), 323-448 Zbl0201.35602MR232821
  13. [13] Gabriel P. : Indecomposable representations II, Symp. Math. Ist. Naz. Alta Mat. (1973), 81-104 Zbl0276.16001MR340377
  14. [14] Gabriel P. and Riedtmann Chr. : Group representations without groups, Comm. Math. Helv. (1979), 240-287. Zbl0447.16023MR535058
  15. [15] Gel'fand I.M. and Ponomarjov V.A. : Model algebras and representations of graphs (russian), Funct. Anal.13 (1979), 1-12. Zbl0437.16020MR545362
  16. [16] Green J.A. : Walking around the Brauer tree, J. Austral. Math. Soc.17 (1974), 197-213. Zbl0299.20006MR349830
  17. [17] Higman D.G. : Indecomposable representations at characteristic p , Duke Math. J.21 (1954), 377-381. Zbl0055.25503MR67896
  18. [18] Janusz G.J. : Indecomposable Modules for finite groups, Ann. of Math.89 (1969), 209-241. Zbl0197.02302MR244307
  19. [19] Kasch F., Kneser M. und Kupisch H.. : Unzerlegbare modulare Darstellungen endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Arch. Math.8 (1957), 320-321. Zbl0106.02601MR93538
  20. [20] Kupisch H. : Projektive Moduln endlicher Gruppen mit zyklischer p-Sylow-Gruppe, J. of Alg.10 (1968), 1-7. Zbl0164.02701MR229734
  21. [21] Kupisch H. : Unzerlegbare Moduin endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Math. Z.108 (1969) 77-104. Zbl0188.09002MR241549
  22. [22] Kupisch H.. : Basisalgebren symmetrischer Algebren und eine Vermutung von Gabriel, Math. Z. (to appear) Zbl0478.16023MR515759
  23. [23] Kupisch H. : Quasi-Frobenius algebras of finite representation type, Proceedings of the 2nd Int. Conf. on Rep. of Alg., Ottawa1979, to appear in Springer Lecture Notes. Zbl0319.16027
  24. [24] Loupias M. : Représentations indécomposables des ensembles ordonnés finis, Thèse1975 (Tours). MR424622
  25. [25] Michler G. : Green correspondence between blocks with cyclic defect groups I, J. of Alg.39 (1976), 26-51. Zbl0314.20005MR399234
  26. [26] Peacock R.M. : Blocks with a cyclic defect group, J. of Alg.34 (1975), 232-259. Zbl0303.20008MR427443
  27. [27] Riedtmann Chr : Algebren, Darstellungsköcher, Ueberlagerungen und zurück, to appear in Comm. Math. Helv. (1979). Zbl0444.16018MR576602
  28. [28] Riedtmann Chr : Representation-finite self-injective algebras of class An and Dn , Proceedings of the 2nd Int. Conf. on Rep. of Alg., Ottawa1979, to appear in Springer Lecture Notes. Zbl0455.16014MR607169
  29. [29] Riedtmann Chr : Representation-finite self-injective algebras of class E6, E7 and E8 , to appear. 
  30. [30] Scherzler E. and Waschbuesch J. : A class of self-injective algebras of finite representation type, Proc. of the 2nd Int. Conf. on Rep. of Alg., Ottawa1979, to appear in Springer Lecture Notes. Zbl0453.16015MR607171
  31. [31] Storrer H.H. : Rings of quotients of perfect rings, Math. Z.122 (1971), 151-165. Zbl0214.05302MR299636
  32. [32] Ulmer F. : A flatness criterion in Grothendieck Categories, Inventiones19 (1973), 331-336 Zbl0257.18020MR335601
  33. [33] Zavadskij A.G. and Nazarova L.A. : Partially ordered sets of tame type, in Matrix problems (russian), Kiev1978. Zbl0461.16024
  34. [34] Eckmann B. : Homotopie et dualité, Col. de Top. Alg., Louvain1956, 41-53. Zbl0078.15403MR88726

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.