Page 1 Next
Displaying 1 – 20 of 288
A Class of Balanced Non-Uniserial Rings.
Vlastimil Dlab, Claus Michael Ringel (1971)
Mathematische Annalen
A combinatorial class number formula.
J. Brzezinski (1989)
Journal für die reine und angewandte Mathematik
A commutativity-or-finiteness condition for rings.
Klein, Abraham A., Bell, Howard E. (2004)
International Journal of Mathematics and Mathematical Sciences
A comparison of deformations and geometric study of varieties of associative algebras.
Makhlouf, Abdenacer (2007)
International Journal of Mathematics and Mathematical Sciences
A construction for quasi-hereditary algebras
Vlastimil Dlab, Claus Michael Ringel (1989)
Compositio Mathematica
A Criterion for Finite Representation Type.
Klaus Bongartz (1984)
Mathematische Annalen
A generalization of Mathieu subspaces to modules of associative algebras
Wenhua Zhao (2010)
Open Mathematics
We first propose a generalization of the notion of Mathieu subspaces of associative algebras , which was introduced recently in [Zhao W., Generalizations of the image conjecture and the Mathieu conjecture, J. Pure Appl. Algebra, 2010, 214(7), 1200–1216] and [Zhao W., Mathieu subspaces of associative algebras], to -modules . The newly introduced notion in a certain sense also generalizes the notion of submodules. Related with this new notion, we also introduce the sets σ(N) and τ(N) of stable...
A non-commutative minimally non-Noetherian ring.
Jutta Hausen, Johnny A. Johson (1975)
Mathematica Scandinavica
A representation theorem for Chain rings
Yousef Alkhamees, Hanan Alolayan, Surjeet Singh (2003)
Colloquium Mathematicae
A ring A is called a chain ring if it is a local, both sided artinian, principal ideal ring. Let R be a commutative chain ring. Let A be a faithful R-algebra which is a chain ring such that Ā = A/J(A) is a separable field extension of R̅ = R/J(R). It follows from a recent result by Alkhamees and Singh that A has a commutative R-subalgebra R₀ which is a chain ring such that A = R₀ + J(A) and R₀ ∩ J(A) = J(R₀) = J(R)R₀. The structure of A in terms of a skew polynomial ring over R₀ is determined.
Addendum to “Ring elements as sums of units”
Charles Lanski, Attila Maróti (2013)
Open Mathematics
We give a comment to Theorem 1.1 published in our paper “Ring elements as sums of units” [Cent. Eur. J. Math., 2009, 7(3), 395–399].
Admissible groups, symmetric factor sets, and simple algebras.
Mollin, R.A. (1984)
International Journal of Mathematics and Mathematical Sciences
Algebraically Compact Rings and Modules.
W. Zimmermann, B. Zimmermann-Huisgen (1978)
Mathematische Zeitschrift
Algebras and Quaternion Defect Groups. I.
Karin Erdmann (1988)
Mathematische Annalen
Algebras and Quaternion Defect Groups. II.
Karin Erdmann (1988)
Mathematische Annalen
Algebras with Cycle-Finite Derived Categories.
Ibrahim Assem, Andrzej Skowronski (1988)
Mathematische Annalen
Algebren, Darstellungsköcher, Ueberlagerungen und zurück.
C. Riedtmann (1980)
Commentarii mathematici Helvetici
Algèbres auto-injectives de représentation finie
Pierre Gabriel (1979/1980)
Séminaire Bourbaki
Algèbres de type de représentation fini
Christine Riedtmann (1984/1985)
Séminaire Bourbaki
Algunas observaciones acerca de matrices triangulares sobre anillos
Oswaldo Lezama (1989)
Revista colombiana de matematicas
Currently displaying 1 – 20 of 288
Page 1 Next