Apparition éventuelle de singularités dans des problèmes d'évolution non linéaires

Claude Bardos

Séminaire Bourbaki (1979-1980)

  • Volume: 22, page 215-224
  • ISSN: 0303-1179

How to cite

top

Bardos, Claude. "Apparition éventuelle de singularités dans des problèmes d'évolution non linéaires." Séminaire Bourbaki 22 (1979-1980): 215-224. <http://eudml.org/doc/109956>.

@article{Bardos1979-1980,
author = {Bardos, Claude},
journal = {Séminaire Bourbaki},
keywords = {non linear evolution equations; appearance of singularities; conservation laws},
language = {fre},
pages = {215-224},
publisher = {Springer-Verlag},
title = {Apparition éventuelle de singularités dans des problèmes d'évolution non linéaires},
url = {http://eudml.org/doc/109956},
volume = {22},
year = {1979-1980},
}

TY - JOUR
AU - Bardos, Claude
TI - Apparition éventuelle de singularités dans des problèmes d'évolution non linéaires
JO - Séminaire Bourbaki
PY - 1979-1980
PB - Springer-Verlag
VL - 22
SP - 215
EP - 224
LA - fre
KW - non linear evolution equations; appearance of singularities; conservation laws
UR - http://eudml.org/doc/109956
ER -

References

top
  1. [1] C. Bardos et U. Frisch - Finite time regularity for bounded and unbounded ideal incompressible fluid. Turbulence and Navier stokes equation, Springer-Verlag Lecture Notes, n° 565 (ed. R. Temam). Zbl0355.76016MR467034
  2. [2] J. Chadam - Asymptotics for Du = m2u+G(x,t,u,ux,ut) Global existence and Decay, Annali della scuola Norm. Sup. di Pisa, Vol. 26(1972), 31-65. Zbl0241.35014
  3. [3] H. Fujita - On the blowing up of solutions of the Cauchy problem for ut = Δu+n1+α, J. Fac. Sci. Univ. Tokyo, sect. 1, 13(1966), 109-124. Zbl0163.34002
  4. [4] R. Glassey - On the blowing up of solution to the Cauchy problem for the non linear Schrödinger equation, J. Math. Phys., 18(1977), 1794-1799. Zbl0372.35009MR460850
  5. [5] J. Ginibre et G. Velo - On a class of non linear equations, (to appear). 
  6. [6] L. Hormander - Implicit function theorem, Lectures at Stanford Univ., Eté 1977. 
  7. [7] F. John - Blow up of solution of non linear wave equations in three space dimensions, Manuscripta Math., 28(1979), 235-268. Zbl0406.35042MR535704
  8. [8] F. John - Formation of singularities in one dimensional non linear wave propagation, Com. Pure Appl. Math., 27(1974), 377-405. Zbl0302.35064MR369934
  9. [9] S. Klainerman - Global existence for non linear wave equations, Comm. Pure Appl. Math., 33(1980), 43-101. Zbl0405.35056MR544044
  10. [10] S. Klainerman - Long time behaviour of solutions to non linear evolution equations, preprint. 
  11. [11] S. Klainerman et A. Majda - Formation of singularities for wave equations including the non linear vibrating string, preprint. 
  12. [12] P. Lax - Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional Conference Serie in Applied Math., SIAM, 1973. Zbl0268.35062MR350216
  13. [13] R. Morf, S. Orzag et U. Frisch - Spontaneous singularity in three dimensional inviscid, incompressible flow, Phys. Review Letters, Vol. 44, n° 9(1980), 572-575. MR558166
  14. [14] J. Moser - A new technique for the construction of solution of non linear differential equations, Proc. Natl. Acad. Sci. USA, 47(1961), 1824-1831. Zbl0104.30503MR132859
  15. [15] J. Nash - The embedding problem for Riemannian manifolds, Ann. Math., 63(1956), 20-63. Zbl0070.38603MR75639
  16. [16] W. Strauss - Non linear scattering theory, Scattering theory in Math. Phys.53-78, La Vita et Marchand (eds) D. Reidel (1974). Zbl0297.35062
  17. [17] V.E. Zakharov et A.B. Shabat - Exact theory of two dimensional self focusing and one dimensional self modulation of waves in non linear media, J. Exp. and Th. Phys., 61(1971), 118-134. MR406174
  18. [18] R. Glassey - Finite-time blow up for solutions of non linear wave equations, preprint. 
  19. [19] T.P. Liu - Development of singularities in the non linear waves for quasilinear hyperbolic partial differential equations, J. Diff. Eq., 33(1979), 92-111. Zbl0379.35048MR540819

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.