Géométrie des systèmes hyperboliques de lois de conservation

Bruno Sevennec

Mémoires de la Société Mathématique de France (1994)

  • Volume: 56, page 1-125
  • ISSN: 0249-633X

How to cite

top

Sevennec, Bruno. "Géométrie des systèmes hyperboliques de lois de conservation." Mémoires de la Société Mathématique de France 56 (1994): 1-125. <http://eudml.org/doc/94908>.

@article{Sevennec1994,
author = {Sevennec, Bruno},
journal = {Mémoires de la Société Mathématique de France},
keywords = {entropy; global hyperbolicity; gas dynamics in Euler and Lagrange coordinates; nonlinear electromagnetism; elastic cable; magnetohydrodynamics; electrophorese},
language = {fre},
pages = {1-125},
publisher = {Société mathématique de France},
title = {Géométrie des systèmes hyperboliques de lois de conservation},
url = {http://eudml.org/doc/94908},
volume = {56},
year = {1994},
}

TY - JOUR
AU - Sevennec, Bruno
TI - Géométrie des systèmes hyperboliques de lois de conservation
JO - Mémoires de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 56
SP - 1
EP - 125
LA - fre
KW - entropy; global hyperbolicity; gas dynamics in Euler and Lagrange coordinates; nonlinear electromagnetism; elastic cable; magnetohydrodynamics; electrophorese
UR - http://eudml.org/doc/94908
ER -

References

top
  1. [A1] V.I. Arnold, Méthodes mathématiques de la mécanique classique, Mir 1976. Zbl0385.70001MR57 #14033a
  2. [A2] V.I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir 1978. Zbl0455.34001
  3. [Ba] C. Bardos, Apparition éventuelle de singularités dans les problèmes d'évolution non linéaires, séminaire Bourbaki No 555 (1980). Zbl0455.35028
  4. [Bla] W. Blaschke, Vorlesungen über Differentialgeometrie ; II, Affine Differentialgeometrie, Berlin, J. Springer, 1923, cf. aussi Gesammelte Werke, Band IV (Burau, Chern et al editors), Thales, Essen, 1985. 
  5. [Bo1] G. Boillat, Chocs caractéristiques, C.R.A.S. 274, sér. A, 1018-1021 (1972). Zbl0234.35063MR45 #4736
  6. [Bo2] G. Boillat, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques, C.R.A.S. 278, sér. A, 909-912 (1974). Zbl0279.35058MR49 #7614
  7. [Bo3] G. Boillat, Symétrisation des systèmes d'équations aux dérivées partielles avec densité d'énergie convexe et contraintes, C.R.A.S. 295, sér. 1, 551-554 (1982). Zbl0511.35057MR84d:35094
  8. [B-H] M. Brio, J.K. Hunter, Rotationnaly invariant hyperbolic waves, C.P.A.M. 43 (1990), 1037-1053. Zbl0726.35079MR91f:35161
  9. [Chk] A.V. Chakmazyan, Normal connection in the geometry of normalized submanifolds of affine space, Soviet Math. (Plenum Publ. Corp.), 2131-2140 (1991). Zbl0729.53016
  10. [Co-D] B.D. Coleman, E.H. Dill, Z. Angew. Math. Phys. 22, 691-702 (1971). Zbl0218.35072
  11. [Co-S1] C.C. Conley, J.A. Smoller, Shock waves as limits of progressive wave solutions of higher order equations, C.P.A.M. 24, 459-472 (1971), Part II : C.P.A.M. 25, 133-146 (1972). Zbl0233.35063MR44 #645
  12. [Co-S2] C.C. Conley, J.A. Smoller, On the structure of magnetohydrodynamic shock waves, C.P.A.M. 27, 367-375 (1974). Zbl0284.76080MR51 #4827
  13. [Daf1] C.M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Diff. Eqs 20, 90-114 (1976). Zbl0262.35038MR53 #8671
  14. [Daf2] C.M. Dafermos, Hyperbolic systems of conservation laws, “Systems of nonlinear partial differential equations”, J. Ball (ed.), NATO ASI series C, No. 111, Reidel Publ. Co., 25-70 (1983). Zbl0536.35048MR85h:35144
  15. [Daf3] C.M. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Rat. Mech. Anal., 94, 373-389 (1986). Zbl0614.35057MR87h:35204
  16. [Daf4] C.M. Dafermos, Admissible wave fans in nonlinear hyperbolic systems, Arch. Rat. Mech. Anal., 106:3, 243-260 (1989). Zbl0707.35091MR90m:35124
  17. [Daf5] C.M. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal., 107:2, 127-157 (1989). Zbl0714.35046MR90h:35150
  18. [Dar1] G. Darboux, Leçons sur la théorie générale des surfaces. Partie IV, Gauthier-Villars 1946. Zbl0257.53001
  19. [Dar2] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars 1910. JFM41.0674.04
  20. [Di-V] F. Dillen, L. Vrancken, Affine differential geometry of hypersurfaces, Geometry and Topology of Submanifolds II, Avignon 1988 (World Scientific 1990), 144-164. Zbl0727.53017MR91i:53020
  21. [DiP1] R.J. DiPerna, Global solutions to a class of nonlinear hyperbolic systems of equations, C.P.A.M. 26, 1-28 (1973). Zbl0256.35053MR48 #9125
  22. [DiP2] R.J. DiPerna, Existence in the large for quasilinear hyperbolic conservation laws, Arch. Rat. Mech. Anal. 52, 244-257 (1973). Zbl0268.35066MR49 #3340
  23. [DiP3] R.J. DiPerna, Decay of solutions of hyperbolic systems of conservation laws with a convex extension, Arch. Rat. Mech. Anal. 64, 1-46 (1977). Zbl0348.35071MR56 #12626
  24. [DiP4] R.J. DiPerna, Uniqueness of solutions of nonlinear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 28, 137-188 (1979). Zbl0409.35057MR80i:35119
  25. [DiP5] R.J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal. 82, 27-70 (1983). Zbl0519.35054MR84k:35091
  26. [DiP6] R.J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal. 88, 223-270 (1985). Zbl0616.35055MR86g:35121
  27. [DiP-M] R.J. DiPerna, A. Majda, The validity of geometrical optics for weak solutions of conservation laws, Comm. Math. Phys. 98, 313-347 (1985). Zbl0582.35081MR87e:35057
  28. [Du-N1] B.A. Dubrovin, S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44:6, 35-124 (1989). Zbl0712.58032MR91g:58109
  29. [Du-N2] B.A. DUBROVIN, S.P. NOVIKOV, Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method, Soviet Math. Dokl. Vol 27, no3, 665-669 (1983). Zbl0553.35011MR84m:58123
  30. [Dy] V.F. D'YACENKO, Cauchy's problem for quasilinear sytems, Sov. Math. Dokl. 2, 7-8 (1961). Zbl0124.30604
  31. [Fe1] E.V. FERAPONTOV, Hamiltonian systems of hydrodynamic type and their realization on hypersurfaces of a pseudo-euclidean space, Journal of Sov. Math., p. 1970-1995, Plenum (1991). Zbl0741.58016MR92f:58159
  32. [Fe2] E.V. FERAPONTOV, Integration of weakly nonlinear hydrodynamic systems in Riemann invariants, Physics Letters A, p. 112-118, (1991). MR92j:35150
  33. [Fe-P] E.V. FERAPONTOV, M.V. PAVLOV, Quasiclassical limit of coupled KdV equations. Riemann invariants and multihamiltonian structure. Physica D, 52, (1991) 211-219. Zbl0742.35055MR92h:58084
  34. [Fi-G] P.C. FIFE, X. GENG, Mathematical aspects of electrophoresis, Proc. Heriot-Watt 1988 : Reaction-Diffusion Equations, Oxford Univ. Press. Zbl0726.35129
  35. [Fre1] H. FREISTÜHLER, Anomale Schocks, strukturell labile Lösungen und die Geometrie der Rankine-Hugoniot Bedingungen, Thèse, Ruhr-Universität Bochum (1987). 
  36. [Fre2] H. FREISTÜHLER, On compact linear degeneracy, IMA preprint 551, University of Minnesota, (1989). 
  37. [Fre3] H. FREISTÜHLER, Rotationnal degeneracy of hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 113, 1991, 39-64. Zbl0722.35055
  38. [Fri] K.O. FRIEDRICHS, On the laws of relativistic electro-magneto-fluid dynamics, C.P.A.M. 27, 749-808 (1974). Zbl0308.76075MR51 #12116
  39. [Fri-L] K.O. FRIEDRICHS, P.D. LAX, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA 68, 1686-1688 (1971). Zbl0229.35061MR44 #3016
  40. [F-R-S] S. FRIEDLAND, J.W. ROBBIN, J.H. SYLVESTER, On the crossing rule, C.P.A.M. 37, 19-37 (1984). Zbl0507.15009MR85b:15010
  41. [Ga] C.S. GARDNER, Korteweg-de Vries equation and generalizations. IV : the Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys 12 (1971), 1548-1551. Zbl0283.35021MR44 #3615
  42. [Gel] I.M. GEL'FAND, Some problems in the theory of quasilinear equations, A.M.S. Trans. Ser. 2, No 29, 295-381 (1963). Zbl0127.04901MR27 #3921
  43. [Ger] P. GERMAIN, Contribution à la théorie des ondes de choc en magnétodynamique des fluides, ONERA Publ. No 97, Paris 1959. MR22 #8971
  44. [Gl] J. GLIMM, Solutions in the large for nonlinear hyperbolic systems of equations, C.P.A.M. 18, 697-715 (1965). Zbl0141.28902MR33 #2976
  45. [Gl-L] J. GLIMM, P.D. LAX, Decay of solutions of systems of nonlinear hyperbolic conservation laws, Mem. A.M.S. No 101, Providence 1970. Zbl0204.11304MR42 #676
  46. [Go1] S.K. GODUNOV, On the concept of generalized solution, Sov. Math. Dokl. 1, 1194-1196 (1960). Zbl0104.31901MR23 #A1932
  47. [Go2] S.K. GODUNOV, On non-unique "blurring" of discontinuities in solutions of quasilinear systems, Sov. Math. Dokl. 2, 43-44 (1961). Zbl0117.06401MR22 #6936
  48. [Go3] S.K. GODUNOV, An interesting class of quasilinear systems, Sov. Math. Dokl. 2, 947-949 (1961). Zbl0125.06002
  49. [Go4] S.K. GODUNOV, Lois de conservation et intégrales d'énergie des équations hyperboliques, Proc. 1986 Nonlinear Hyperbolic Problems XV, p. 135-149, C. Carasso, P.A. Raviart, D. Serre eds., Lect. Notes Math. 1270, Springer-Verlag 1987. Zbl0636.35051
  50. [Gue] O. GUÈS, Problèmes mixtes hyperboliques quasilinéaires caractéristiques, Thèse, Université de Rennes-1, (1989). 
  51. [Gui-St] V. GUILLEMIN, S. STERNBERG, Symplectic techniques in physics, Cambridge Univ. Press, 1984. Zbl0576.58012MR86f:58054
  52. [Ha-L-vL] A. HARTEN, P.D. LAX, B. VAN LEER, On upstream differencing and Godunov-type schemes for hyperbolic systems of conservation laws, SIAM Review, 25, 1, 35- (1983). Zbl0565.65051MR85h:65188
  53. [Hb1] A. HEIBIG, Etude variationnelle du problème de Riemann, Thèse, Lyon 1989. 
  54. [Hb2] A. HEIBIG, Régularité des solutions du problème de Riemann, Comm. in P.D.E., 15, 5, 693-709 (1990). Zbl0716.35013MR92g:35131
  55. [Hb3] A. HEIBIG, Existence et unicité des solutions pour certains systèmes de lois de conservation, Prepubl. ENS-Lyon no 32, (1990) (à paraître dans Arch. Rat. Mech. Anal.). Zbl0722.35056MR91i:35124
  56. [Hb4] A. HEIBIG, Error estimates for oscillating solutions to hyperbolic systems of conservation laws, Comm. in P.D.E., 18, 2, 281-304 (1993). Zbl0818.35061MR94c:35121
  57. [Hel] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Acad. Press, New York, 1978. Zbl0451.53038
  58. [H-M-R] J.K. HUNTER, A. MAJDA, R. ROSALES, Resonantly interacting weakly nonlinear waves. II. Several space variables, Stud. Appl. Math. 75, 187-226 (1986). Zbl0657.35084MR89h:35199
  59. [Je] A. Jeffrey, Quasilinear hyperbolic systems and waves, Pitman, London 1976. Zbl0322.35060MR54 #5635
  60. [Jn] F. John, Formation of singularities in one-dimensional nonlinear wave propagation, C.P.A.M., Vol 27, 377-405 (1974). Zbl0302.35064MR51 #6163
  61. [Jo-M-R1] J.L. Joly, G. Metivier, J. Rauch, Rigorous resonant 1-d nonlinear geometric optics, Journées EDP, St-Jean de Monts, 1990. Zbl0718.35094MR92e:35104
  62. [Jo-M-R2] J.L. Joly, G. Metivier, J. Rauch, Formal and rigorous nonlinear high frequency waves, Proc. Nonlin. Hyp. Eq., Como 1990, Pitman. (à paraître) 
  63. [Jou] E. Jouguet, Sur la propagation des discontinuités dans les fluides, C.R.A.S. 132, 673-676 (1901). Zbl32.0762.01JFM32.0762.01
  64. [K-K1] B.L. Keyfitz, H.C. Kranzer, The Riemann problem for some nonstrictly hyperbolic systems of conservation laws, Notices AMS, 23 (1976), A-127-128. 
  65. [K-K2] B.L. Keyfitz, H.C. Kranzer, Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two non-linear conservation laws, J. Diff. Equ., 27 (1978), 444-476. Zbl0364.35036MR57 #6866
  66. [K-K3] B.L. Keyfitz, H.C. Kranzer, A system of non-stictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal., 72 (1980) 219-241. Zbl0434.73019MR80k:35050
  67. [K-N] S. Kobayashi, K. Nomizu, Foundations of differential geometry I,II, Wiley Interscience, New York, 1963,1969. Zbl0119.37502
  68. [Kru] S.N. KruŽkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 10, 217-242 (1970). Zbl0215.16203
  69. [K-T] N.N. Kuznetsov, V.A. Tupshiev, A certain generalization of a theorem of Glimm, Dokl. Akad. Nauk. SSSR, 221, 287-290 (1975). Zbl0318.35062MR52 #6197
  70. [Law] H.B. Lawson Jr, The quantitative theory of foliations, CBMS-NSF Reg. Conf. Ser. in Math. No 27, AMS, Providence, 1977. Zbl0343.57014MR56 #6675
  71. [Lax1] P.D. Lax, The initial value problem for nonlinear hyperbolic equation in two independent variables, Ann. of Math. Studies 33, Princeton, 211-229 (1954). Zbl0057.32502MR16,828b
  72. [Lax2] P.D. Lax, Hyperbolic systems of conservation laws: II, CPAM Vol 10, 537-566 (1957). Zbl0081.08803MR20 #176
  73. [Lax3] P.D. Lax, Shock waves and entropy, Contributions to nonlinear functional analysis, Zarantonello ed., p. 603-634, NY Academic Press, 1971. Zbl0268.35014MR52 #14677
  74. [Lax4] P.D. Lax, The formation and decay of shock waves, Amer. Math. Monthly 79, 227-241 (1972). Zbl0228.35019MR45 #7304
  75. [Lax5] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Reg. Conf. Ser. in Appl. Math. no 11 SIAM (1973). Zbl0268.35062MR50 #2709
  76. [Lax6] P.D. Lax, The multiplicity of eigenvalues, B.A.M.S. Vol 6 No 2, 213-214 (1982). Zbl0483.15006MR83a:15009
  77. [Lax-Lv] P.D. Lax, C.D. Levermore, The small dispersion limit for the KdV equation I, II & III, C.P.A.M. 36 (1983), 253-290, 571-593, 809-830 Zbl0532.35067MR85g:35105a
  78. [Lev] C.D. Levermore, The hyperbolic nature of the zero dispersion KdV limit, Comm. Part. Diff. Equ., 13 (1988), 495-514. Zbl0678.35081MR89h:35302
  79. [Li1] T.-P. Liu, Existence and uniqueness for Riemann problems, Trans. A.M.S., 212, 375-382 (1975). Zbl0317.35062MR52 #1036
  80. [Li2] T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Diff. Eqs., 18, 218-234 (1975). Zbl0297.76057MR51 #6168
  81. [Li3] T.-P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics, Indiana Univ. Math. J. 26,1, 147-177 (1977). Zbl0361.35056MR55 #8576
  82. [Li4] T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57, 135-148 (1977). Zbl0376.35042MR57 #10259
  83. [Li5] T.-P. Liu, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations, J. Diff. Eqs, 33, 92-111 (1979). Zbl0379.35048MR80g:35075
  84. [Li6] T.-P. Liu, Admissible solutions of hyperbolic conservation laws, Mem. A.M.S. No 240, Providence 1981. Zbl0446.76058MR82i:35116
  85. [Ma-P] A. Majda, R.L. Pego, Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs. 56, 229-262 (1985). Zbl0512.76067MR86b:35132
  86. [Ma-R] A. Majda, R. Rosales, Resonantly interacting weakly nonlinear waves. I. A single space variable, Stud. Appl. Math. 71, 149-179 (1984). Zbl0572.76066MR86e:35089
  87. [Ma-R-S] A. Majda, R. Rosales, M. Schonbek, A canonical system of integro-differential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79, 205-262 (1988). Zbl0669.76103MR90g:76077
  88. [Mo1] M.S. Mock, Systems of conservation laws of mixed type, J. Diff. Eqs. 37, 70-88 (1980). Zbl0413.34017MR81m:35088
  89. [Mo2] M.S. Mock, A topological degree for orbits connecting critical points of autonomous systems, J. Diff. Eqs. 38, 176-191 (1980). Zbl0417.34053MR82f:35126
  90. [Mo3] M. Sever, Existence in the large for Riemann problems for systems of conservation laws, Trans. A.M.S. 292, 375-381 (1985). Zbl0591.35037MR87b:35105
  91. [Mo4] M. Sever, Uniqueness failure for entropy solutions of hyperbolic systems of conservation laws, C.P.A.M. 42, 173-183 (1989), erratum C.P.A.M. 43, 295-297 (1990). Zbl0645.35063MR90a:35143
  92. [Mo5] M. Sever, The rate of total entropy generation for Riemann problems, J. Diff. Eqs. 87, 115-143 (1990). Zbl0737.35038MR91g:35172
  93. [Mo-F] O.I. Mokhov, E.V. Ferapontov, Nonlocal hamiltonian operators of hydrodynamic type and constant curvature metric, Russ. Math. Surv. 45, 3 (1990) 218-219. Zbl0712.35080MR91g:58084
  94. [Ni-Sm] T. Nishida, J.A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, C.P.A.M. 26, 183-200 (1973). Zbl0267.35058MR48 #9126
  95. [No-Pi] K. Nomizu, U. Pinkall, Cubic form theorem for affine immersions, Results in Math. (Birkhäuser), 13, 338-362 (1988). Zbl0657.53007MR89c:53006
  96. [Ole1] O.A. Oleinik, Cauchy's problem for nonlinear equations in a class of discontinuous functions, Dokl. 95 (1954), A.M.S. Transl. (2) 42, 7-12 (1964). Zbl0154.10801MR16,253a
  97. [Ole2] O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi (1957), A.M.S. Transl. (2) 26, 95-172 (1963). Zbl0131.31803
  98. [Ole3] O.A. Oleinik, Uniqueness and stability of the generalized solutions of the Cauchy problem for a quasilinear equation, Uspekhi (1959), A.M.S. Transl. (2) 33, 285-290 (1963). Zbl0132.33303
  99. [Olv] P.J. Olver, Applications of Lie groups to differential equations, Springer Verlag, 1986. Zbl0588.22001MR88f:58161
  100. [Ovs] L.V. Ovsiannikov, Group analysis of differential equations, Acad. Press, 1982. Zbl0485.58002MR83m:58082
  101. [Peg] R. Pego, Some explicit resonating waves in weakly nonlinear gas dynamics, Stud. Appl. Math. 79, 263-270 (1988). Zbl0669.76104MR90g:76078
  102. [Ran] W.J.M. Rankine, On the thermodynamical theory of waves of finite longitudinal disturbance, Phil. Trans. Roy. Soc. Lond. 160, 277-288 (1870). JFM02.0832.01
  103. [Rie] B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Ges. Werke, Leipzig, 157-175 (1892). 
  104. [Sch] M. Schatzman, Continuous Glimm functionals and uniqueness of solutions of the Riemann problem, Ind. Univ.Math.J. 34, 533-589 (1985). Zbl0579.35053MR87h:35206
  105. [Ser1] D. Serre, Systèmes hyperboliques non-linéaires commutant entre eux, Prepubl. Lyon-St Etienne No 26 (1984). 
  106. [Ser2] D. Serre, Compacité par compensation et systèmes hyperboliques de lois de conservation, C.R.Acad.Sc. Paris, t. 299, ser.I, No 20, p.555-558 (1984). Zbl0578.35055MR86h:35083a
  107. [Ser3] D. Serre, La compacité par compensation pour les systèmes hyperboliques non-linéaires de deux équations à une dimension d'espace, J.M.P.A. 65, 423-468 (1986). Zbl0601.35070MR88d:35123
  108. [Ser4] D. Serre, Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation, J. of Diff. Equ. 68, 137-169 (1987). Zbl0627.35062MR88k:35127
  109. [Ser5] D. Serre, Domaines invariants pour les systèmes hyperboliques de lois de conservation, J. of Diff. Equ. 69, 46-62 (1987). Zbl0626.35061MR88k:35126
  110. [Ser6] D. Serre, Existence globale d'ondes planes en électromagnétisme non-linéaire, C.R.Acad.Sc. Paris, t. 304, ser.I, No 20 (1987). Zbl0621.35060MR88g:35179
  111. [Ser7] D. Serre, Systèmes hyperboliques riches de lois de conservation, Pre-publ. Lyon-St Etienne no 74 (1988), et Sém. Collège de France, “non-linear PDEs and their applications”, H. Brézis & J.-L. Lions eds., Pitman (à paraître). 
  112. [Ser8] D. Serre, Les ondes planes en éléctromagnétisme non linéaire, Physica D, No 38, 227-251 (1988). Zbl0736.35133MR90f:78007
  113. [Ser9] D. Serre, Richness and the classification of quasilinear hyperbolic systems, IMA vol. in Math. and their appl. Vol 29, Springer Verlag, 1991. Zbl0760.35028MR92a:35101
  114. [Ser10] D. Serre, Systèmes d'EDO invariants sous l'action de systèmes hyperboliques d'EDP, Ann. Inst. Fourier, 39, 4, 953-968 (1989). Zbl0687.35006MR91i:34050
  115. [Ser11] D. Serre, Oscillations non-linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol 8, No 34, p. 351-417, 1991. Zbl0810.35060MR92h:35138
  116. [Ser12] D. Serre, Oscillations non-linéaires de haute fréquence ; dim=1, Pre-publ. Lyon-St Etienne no 97 (1990) et Sém. Collège de France, “non-linear PDEs and their applications”, H. Brézis & J.-L. Lions eds., Pitman (à paraître). 
  117. [Ser13] D. Serre, Quelques méthodes d'étude de la propagation d'oscillations hyperboliques non-linéaires, Séminaire EDP 1990-1991, Ecole Polytechnique, exposé No XX. Zbl0755.35071
  118. [Ser14] D. Serre, Un modèle relaxé pour les câbles inextensibles, MMAN,25,4 (1991) 465-481. Zbl0725.73100MR92g:73054
  119. [Ser15] D. Serre, Intégrabilité d'une classe de systèmes de lois de conservation, Prépubl. ENS-Lyon No 45 (1991), à paraître dans Forum Math. Zbl0769.35040
  120. [Sm] J.A. Smoller, Shock waves and reaction-diffusion equations, Grund. Math. Wiss. 258, Springer Verlag 1983. Zbl0508.35002MR84d:35002
  121. [Sp] M. Spivak, A comprehensive introduction to differential geometry, Tome III, Publish or Perish Inc., 1975. Zbl0439.53003
  122. [Sto] G.G. Stokes, On a difficulty in the theory of sound, Philosophical Magazine 33, 349-356, (1848). 
  123. [Str1] J.W. Strutt (Lord Rayleigh), The Theory of Sound, Vol. II, London : McMillan 1878. 
  124. [Str2] J.W. Strutt (Lord Rayleigh), Note on tidal bores, Proc. Roy. Soc. London A 81,448-449 (1908). JFM39.0799.01
  125. [Te1] B. Temple, Solutions in the large for some nonlinear hyperbolic conservation laws of gas dynamics, J. Diff. Eqs. 41, 96-161 (1981). Zbl0476.76070
  126. [Te2] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc. 280, 781-795 (1983). Zbl0559.35046MR84m:35080
  127. [Ts] S.P. Tsarev, On the Liouville Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type arising in the Bogolyubov-Whitham averaging theory, Russian Math. Surveys 39 : 6, 227-228 (1984). Zbl0582.58012MR86h:58075
  128. [Ts2] S.P. Tsarev, On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Soviet Math. Dokl. 31 No3, 488-491 (1985). Zbl0605.35075MR87b:58030
  129. [Ts3] S.P. Tsarev, Ph. D. Thesis, Moscow state University, 1986. 
  130. [Ts4] S.P. TSAREV, The geometry of hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR Izvsetiya 37 No2 (1991) 397-419. Zbl0796.76014MR92b:58109
  131. [Vo] A.I. VOL'PERT, The BV space and quasilinear equations, Math. USSR Sb. 2, 225-267 (1967). Zbl0168.07402
  132. [Vv] N.D. V'VEDENSKAYA, An example of non-uniqueness of a generalized solution of a quasilinear system of equations, Sov. Math. Dokl. 2, 89-90 (1961). Zbl0114.30001
  133. [Wa] D. WAGNER, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J.Diff.Eqs. 68, 118-136 (1987). Zbl0647.76049MR88i:35100
  134. [Wh] G.B. WHITHAM, Linear and nonlinear waves, Wiley NY 1974. Zbl0373.76001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.