Le problème de la mesure

Jacques Stern

Séminaire Bourbaki (1983-1984)

  • Volume: 26, page 325-346
  • ISSN: 0303-1179

How to cite


Stern, Jacques. "Le problème de la mesure." Séminaire Bourbaki 26 (1983-1984): 325-346. <http://eudml.org/doc/110033>.

author = {Stern, Jacques},
journal = {Séminaire Bourbaki},
keywords = {axioms of set theory; measure problem; historical exposition},
language = {fre},
pages = {325-346},
publisher = {Société Mathématique de France},
title = {Le problème de la mesure},
url = {http://eudml.org/doc/110033},
volume = {26},
year = {1983-1984},

AU - Stern, Jacques
TI - Le problème de la mesure
JO - Séminaire Bourbaki
PY - 1983-1984
PB - Société Mathématique de France
VL - 26
SP - 325
EP - 346
LA - fre
KW - axioms of set theory; measure problem; historical exposition
UR - http://eudml.org/doc/110033
ER -


  1. (1) P.J. Cohen, The independance of the continuum hypothesis, parts I, II, Proc. nat. Acad. Sci.50 (1963) 1143-1148 ; 51 (1964) 105-110. Zbl0192.04401MR159745
  2. (2) K. Gödel, The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Annals of Mathematics Studies n° 3, Princeton University Press, Princeton N.J. (1940). Zbl0061.00902MR2514
  3. (3) N. Lusin, Sur la classification de M. Baire. C.R. Acad. Sci. Paris164 (1917) 91-94. JFM46.0390.03
  4. (4) D.A. Martin and R.M. Solovay, Internal Cohen extensions, Annals of Math. Logic2 (1970) 143-178. Zbl0222.02075MR270904
  5. (5) J. Raisonnier, A mathematical proof of S. Shelah's theorem on the measure problem and related results, Israël J. Math. à paraître. Zbl0596.03056
  6. (6) J. Raisonnier et J. Stern, Mesurabilité et propriété de Baire, C.R.A.S. Paris t. 296 (1983) 323-326. Zbl0549.03038MR697963
  7. (7) S. Shelah, The measure case, notes manuscrites (1980). 
  8. (8) W. Sierpinski, Sur les rapports entre l'existence des intégrales ∫10f(x,y)dy, ∫10f(x,y)dy, ∫10dx ∫10f(x,y)dy, Fund Math.1 (1920) 142-147. Zbl47.0245.01JFM47.0245.01
  9. (9) W. Sierpinski, Fonctions additives non complètement additives et fonctions non mesurables, Fund. Math.30 (1938) 96-99. Zbl0018.11403
  10. (10) R.M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Annals of Math, 92 (1970) 1-56. Zbl0207.00905MR265151
  11. (11) J. Stern, Regularity properties of definable sets of reals, Annals of Math. Logic, à paraître. Zbl0583.03033
  12. (12) M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia. Math. LXVII (1980) 13-43. Zbl0435.46023MR579439
  13. (13) G. Vitali, Sul problema della mesura dei gruppi di punti di una retta, Bologna (1905). Zbl36.0586.03JFM36.0586.03

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.