Sur les rapports entre l’existence des intégrales 0 1 f ( x , y ) d x , 0 1 f ( x , y ) d y et 0 1 d x 0 1 f ( x , y ) d y

Wacław Sierpiński

Fundamenta Mathematicae (1920)

  • Volume: 1, Issue: 1, page 142-147
  • ISSN: 0016-2736

Abstract

top
Le but de cette note est de démontrer que la réponse au problème (posée par Stanisław Ruziewicz) suivant: L'existence (pour une function bornée f(x,y), définie dans le carré 0 ≤ x ≤ 1, 0 ≤ y ≤ 1) des intégrales au sens de Lebesgue: ∫_0^1f(x,y)dx pour 0 ≤ y ≤ 1 ∫_0^1f(x,y)dy pour 0 ≤ x ≤ 1 entraîne-t-elle toujours l'existence de l'intégrale (au sens de Lebesgue) ∫_0^1 dx∫_0^1f(x,y)dy ? est négative, si l'on admet l'hypothèse du continu.

How to cite

top

Sierpiński, Wacław. "Sur les rapports entre l’existence des intégrales $∫_0^1f(x,y)dx$, $∫_0^1f(x,y)dy$ et $∫_0^1dx∫_0^1f(x,y)dy$." Fundamenta Mathematicae 1.1 (1920): 142-147. <http://eudml.org/doc/212598>.

@article{Sierpiński1920,
abstract = {Le but de cette note est de démontrer que la réponse au problème (posée par Stanisław Ruziewicz) suivant: L'existence (pour une function bornée f(x,y), définie dans le carré 0 ≤ x ≤ 1, 0 ≤ y ≤ 1) des intégrales au sens de Lebesgue: ∫\_0^1f(x,y)dx pour 0 ≤ y ≤ 1 ∫\_0^1f(x,y)dy pour 0 ≤ x ≤ 1 entraîne-t-elle toujours l'existence de l'intégrale (au sens de Lebesgue) ∫\_0^1 dx∫\_0^1f(x,y)dy ? est négative, si l'on admet l'hypothèse du continu.},
author = {Sierpiński, Wacław},
journal = {Fundamenta Mathematicae},
keywords = {teoria miary; miara Lebesgue'a; całka Lebesgue'a; funkcja ograniczona},
language = {fre},
number = {1},
pages = {142-147},
title = {Sur les rapports entre l’existence des intégrales $∫_0^1f(x,y)dx$, $∫_0^1f(x,y)dy$ et $∫_0^1dx∫_0^1f(x,y)dy$},
url = {http://eudml.org/doc/212598},
volume = {1},
year = {1920},
}

TY - JOUR
AU - Sierpiński, Wacław
TI - Sur les rapports entre l’existence des intégrales $∫_0^1f(x,y)dx$, $∫_0^1f(x,y)dy$ et $∫_0^1dx∫_0^1f(x,y)dy$
JO - Fundamenta Mathematicae
PY - 1920
VL - 1
IS - 1
SP - 142
EP - 147
AB - Le but de cette note est de démontrer que la réponse au problème (posée par Stanisław Ruziewicz) suivant: L'existence (pour une function bornée f(x,y), définie dans le carré 0 ≤ x ≤ 1, 0 ≤ y ≤ 1) des intégrales au sens de Lebesgue: ∫_0^1f(x,y)dx pour 0 ≤ y ≤ 1 ∫_0^1f(x,y)dy pour 0 ≤ x ≤ 1 entraîne-t-elle toujours l'existence de l'intégrale (au sens de Lebesgue) ∫_0^1 dx∫_0^1f(x,y)dy ? est négative, si l'on admet l'hypothèse du continu.
LA - fre
KW - teoria miary; miara Lebesgue'a; całka Lebesgue'a; funkcja ograniczona
UR - http://eudml.org/doc/212598
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.