A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations
Séminaire Équations aux dérivées partielles (1999-2000)
- Volume: 1999-2000, page 1-16
Access Full Article
topHow to cite
topKlainerman, Sergiu. "A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-16. <http://eudml.org/doc/11005>.
@article{Klainerman1999-2000,
author = {Klainerman, Sergiu},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Minkowski space-time; basic dispersive inequality; generalized energy estimates; commuting vector fields method; Sobolev inequalities},
language = {eng},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations},
url = {http://eudml.org/doc/11005},
volume = {1999-2000},
year = {1999-2000},
}
TY - JOUR
AU - Klainerman, Sergiu
TI - A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 16
LA - eng
KW - Minkowski space-time; basic dispersive inequality; generalized energy estimates; commuting vector fields method; Sobolev inequalities
UR - http://eudml.org/doc/11005
ER -
References
top- H. Bahouri and J.Y.Chemin “Equations d’ondes quasilineaires et effect dispersif” American Journal of Mathematics 121(1999), 1337–1377. Zbl0952.35073
- H. Bahouri and J.Y.Chemin “Equations d’ondes quasilineaires et estimations de Strichartz” International Mathematics Research Notices 21(1999) 1141–1177. Zbl0938.35106
- D.Christodoulou, S.Klainerman, “Asymptotic properties of linear field equations in Minkowski space". Comm.Pure Appl.Math. XLIII,(1990), 137-199. Zbl0715.35076
- D.Christodoulou, S.Klainerman, “The global non linear stability of the Minkowski space". Princeton Mathematical series, 41 (1993). Zbl0827.53055
- L.Hormander, “Lectures on Nonlinear Hyperbolic Equations Mathematics and Applications 26, Springer-Verlag (1987). Zbl0881.35001
- Keel-Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120 (1998) 955-980. Zbl0922.35028
- S.Klainerman “Uniform decay estimates and the Lorentz invariance of the classical wave equation". Comm.Pure.Appl.Math. 38, (1985), 321-332. Zbl0635.35059
- S.Klainerman, “Remarks on the global Sobolev inequalities in Minkowski Space". Comm.Pure.Appl.Math. 40, (1987), 111-117. Zbl0686.46019
- S.Klainerman, “The null condition and global existence to nonlinear wave equations". Lect. Appl. Math. 23, (1986), 293-326. Zbl0599.35105
- S.Klainerman, “A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations” preprint. Zbl0993.35022
- S. Klainerman, I. Rodniansky “Improved regularity results for quasilinear wave equations” in preparation.
- S.Klainerman, T. Sideris “On Almost Global Existence for Nonrelativistic Wave Equations in 3D” Comm.Pure.Appl.Math. 49 1996, 307-321 Zbl0867.35064
- O. Liess “Decay Estimates in Crystal Optics” Assymptotic Analysis 4(1991), 61-95. Zbl0735.35018
- C. Morawetz “The Limiting Amplitude Principle” Comm.Pure.Appl.Math. 15, 1962, 349-362. Zbl0196.41202
- H. Smith “A parametrix construction for wave equations with coefficients” Ann Inst Fourier de Grenoble 48(3) 1994, 797-835. Zbl0974.35068
- H. Smith “ Strichartz and Nullform Estimates for Metrics of Bounded Curvature” preprint.
- D. Tataru “Strichartz Estimates for operators with nonsmooth coefficients and the nonlinear wave equation” To appear in AJM Zbl0959.35125
- D. Tataru ‘Strichartz Estimates for second order hyperbolic operators with nonsmooth coefficients III” preprint Zbl0990.35027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.