Propriétés de convexité de l'application moment

Alain Bruguières

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 63-87
  • ISSN: 0303-1179

How to cite


Bruguières, Alain. "Propriétés de convexité de l'application moment." Séminaire Bourbaki 28 (1985-1986): 63-87. <>.

author = {Bruguières, Alain},
journal = {Séminaire Bourbaki},
keywords = {symplectic manifold; Lie group; moment map; stratification; Marsden- Weinstein reduction; algebraic geometry},
language = {fre},
pages = {63-87},
publisher = {Société Mathématique de France},
title = {Propriétés de convexité de l'application moment},
url = {},
volume = {28},
year = {1985-1986},

AU - Bruguières, Alain
TI - Propriétés de convexité de l'application moment
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 63
EP - 87
LA - fre
KW - symplectic manifold; Lie group; moment map; stratification; Marsden- Weinstein reduction; algebraic geometry
UR -
ER -


  1. [A] M.F. Atiyah - Convexity and commuting Hamiltonians, Bull. London Math. Soc.14, 1-15 (1982). Zbl0482.58013MR642416
  2. [A-B] M.F. Atiyah et R. Bott - The yang - Mills equation over Riemann surfaces, Phil. Trans. Royal Soc. London, A 308, 523-615 (1982). Zbl0509.14014MR702806
  3. [A-B1] M.F. Atiyah et R. Bott - The moment map and equivariant cohomology, Topology, 23, n° 1, 1-28 (1984). Zbl0521.58025MR721448
  4. [B-V] N. Berline et M. Vergne - Zéros d'un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. Journal50, N° 2, 539-549 (1983) Zbl0515.58007MR705039
  5. [BB] A. Bialynicki - Birula - Some theorems on actions of algebraic groups, Annals of Math.98, 480-497 (1973). Zbl0275.14007MR366940
  6. [BB-S] A. Bialynicki - Birula et J. Świecicka - Generalized moment functions and orbit spaces, Preprint. MR882422
  7. [D-H],[D-Hl] J.J. Duistermaat et G.J. Heckman - On the variation in the cohomology of the symplectic form of the reduced phase space, et addendum, Invent. Math.69, 259-268 (1982) et 72, 153-158 (1983). Zbl0503.58016MR674406
  8. [G-S] V. Guillemin et S. Sternberg - Symplectic techniques in physics, Cambridge University Press (1984). Zbl0576.58012MR770935
  9. [G-S1],[G-S2] V. Guillemin et S. Sternberg - Convexity properties of the moment mapping I et II, Invent. Math.67, 491-513 (1982) et 77, 533-546 (1984). Zbl0561.58015MR664117
  10. [H] W.H. Hesselink - Uniform instability in reductive groups, J. Reine Angew. Math.304, 74-96 (1978). Zbl0386.20020MR514673
  11. [K] G. Kempf - Instability in invariant theory, Ann. Math.108, 299-316 (1978). Zbl0406.14031MR506989
  12. [Ki] F.C. Kirwan - Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, Mathematical Notes31(1984). Zbl0553.14020MR766741
  13. [Ki1] F.C. Kirwan - Convexity properties of the moment mapping III, Invent. Math.77, 547-552 (1984). Zbl0561.58016MR759257
  14. [Ki2] F.C. Kirwan - Partial desingularisations of quotients of non singular varieties and their Betti numbers, preprint soumis à Ann. Math. Zbl0592.14011
  15. [Ki3] F.C. Kirwan - On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles, preprint soumis à Acta. Math. 
  16. [Ki-L] F.C. Kirwan et R. Lee - Article en préparation. 
  17. [M-W] J. Marsden et A. Weinstein - Reduction of symplectic manifolds with symmetry, Reports on Math. Phys.5, 121-130 (1974). Zbl0327.58005MR402819
  18. [M] D. Mumford - Geometric invariant theory, Springer-Verlag (1965). Seconde édition : D. MUMFORD et J. FOGARTY (1982). Zbl0504.14008MR214602

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.