A double chain of coupled circuits in analogy with mechanical lattices.
Page 1 Next
Boyd, J.N., Raychowdhury, P.N. (1991)
International Journal of Mathematics and Mathematical Sciences
François Gay-Balmaz, Tudor S. Ratiu (2010)
Annales de l’institut Fourier
For symmetric classical field theories on principal bundles there are two methods of symmetry reduction: covariant and dynamic. Assume that the classical field theory is given by a symmetric covariant Lagrangian density defined on the first jet bundle of a principal bundle. It is shown that covariant and dynamic reduction lead to equivalent equations of motion. This is achieved by constructing a new Lagrangian defined on an infinite dimensional space which turns out to be gauge group invariant.
Vaisman, I. (1999)
Acta Mathematica Universitatis Comenianae. New Series
Jean-Louis Verdier (1980/1981)
Séminaire Bourbaki
J. Śniatycki, W. M. Tulczyjew (1972)
Annales de l'I.H.P. Physique théorique
M. Francaviglia, D. Krupka (1985)
Annales de l'I.H.P. Physique théorique
Edward Nelson (1985)
Séminaire de probabilités de Strasbourg
Vieri Benci, Paul H. Rabinowitz (1979)
Inventiones mathematicae
Jedrzej Śniatycki (1974)
Annales de l'I.H.P. Physique théorique
P. Dazord (1985)
Annales scientifiques de l'École Normale Supérieure
M. Combescure (1987)
Annales de l'I.H.P. Physique théorique
Demeter Krupka (1979)
Mathematica Slovaca
Ciccoli, N. (2001)
Acta Mathematica Universitatis Comenianae. New Series
D. Mangeron, N. Irimiciuc, U. D'Ambrosio (1981)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Alan Weinstein (1973)
Inventiones mathematicae
Anton Dekrét (1977)
Mathematica Slovaca
M. Adler (1978/1979)
Inventiones mathematicae
Alekseevsky, D., Guha, P. (1996)
Acta Mathematica Universitatis Comenianae. New Series
Ivan Kolář, Marco Modugno (1990)
Czechoslovak Mathematical Journal
Jaime Muñoz Masqué (1985)
Revista Matemática Iberoamericana
The aim of the present work is to present a geometric formulation of higher order variational problems on arbitrary fibred manifolds. The problems of Engineering and Mathematical Physics whose natural formulation requires the use of second order differential invariants are classic, but it has been the recent advances in the theory of integrable non-linear partial differential equations and the consideration in Geometry of invariants of increasingly higher orders that has highlighted the interest...
Page 1 Next