Géométrie des polynômes. Coût global moyen de la méthode de Newton

Alexis Marin

Séminaire Bourbaki (1986-1987)

  • Volume: 29, page 19-36
  • ISSN: 0303-1179

How to cite


Marin, Alexis. "Géométrie des polynômes. Coût global moyen de la méthode de Newton." Séminaire Bourbaki 29 (1986-1987): 19-36. <http://eudml.org/doc/110079>.

author = {Marin, Alexis},
journal = {Séminaire Bourbaki},
keywords = {computational efficiency; Newton's method; polynomial equations},
language = {fre},
pages = {19-36},
publisher = {Société Mathématique de France},
title = {Géométrie des polynômes. Coût global moyen de la méthode de Newton},
url = {http://eudml.org/doc/110079},
volume = {29},
year = {1986-1987},

AU - Marin, Alexis
TI - Géométrie des polynômes. Coût global moyen de la méthode de Newton
JO - Séminaire Bourbaki
PY - 1986-1987
PB - Société Mathématique de France
VL - 29
SP - 19
EP - 36
LA - fre
KW - computational efficiency; Newton's method; polynomial equations
UR - http://eudml.org/doc/110079
ER -


  1. [Ba] B. Barna, Uber Divergenzpunkte des Newtonshe Verfahrens zur Bestimmung von Würzeln algebraischer Gleichungen III, Publ. Math. Debrecen8 (1961), 193-207. Zbl0189.48002MR135224
  2. [C] J. Curry, On zero finding methods of higher order from data at one point, MSRI Berkeley (1986). 
  3. [DH] A. Douady AND J.H. Hubbard, On the dynamics of polynomial like mappings, Ann. Sci. E.N.S., 4e série, t.18 (1985), 287-343. Zbl0587.30028MR816367
  4. [F] J.-P. Francoise, Estimations uniformes pour les domaines de convergence de la méthode de Newton, Séminaire de Géométrie Algébrique Réelle ( J.J. Risler), Publ. Univ. Paris VII, 24 (1986). Zbl0634.30006MR923552
  5. [G] O. Gabber, Diverses interventions au Séminaire Bourbaki, tradition orale. 
  6. [H] W. Hayman, "Multivalent functions", Cambridge Univ. Press, Cambridge, 1958. Zbl0904.30001MR108586
  7. [HPS] M. Hirsch, C. Pugh AND M. Shub, Invariant manifolds, Lectures Notes in Math.583 (1977), Springer, New-York. Zbl0355.58009MR501173
  8. [HM] M. Hurley AND C. Martin, Newton's algorithm and chaotic dynamical systems, SIAM J. Math. Anal.15 (1984), 238-252. Zbl0588.65033MR731865
  9. [Ka] L. Kantorovitch ET G. Akilov, Analyse fonctionnelle, t.2, Editions MIR, Moscou, 1981. Zbl0531.46001
  10. [McM] C. McMullen, "Families of Rationals Maps and Iterative Root-Finding Algorithms", Ph. D., Harvard Univ., Mai 1985, à paraître. Zbl0634.30028
  11. [M] A. Marin, Les arbres de Shub-Smale, Séminaire de Géométrie algébrique réelle ( J.J. Risler), Publ. Univ. Paris VII24 (1986). MR923553
  12. [O] J. Oesterle, Démonstration de la conjecture de Bieberbach, exposé n°649 du Séminaire Bourbaki (juin 1985). Zbl0625.30019
  13. [R1] J. Renegar, On the efficiency of Newton's method in approximating all zeros of a system of complex polynomials, à paraître dans Mathematics of Operations Research. Zbl0618.65038
  14. [R2] J. Renegar, A polynomial-time algorithm based on Newton's method for linear programming, MSRI Berkeley (1986). 
  15. [SU] D. Saari AND J. Urenko, Newton's method, circle maps and chaotic motions, Amer. Math. Monthly91 (1984), 3-17. Zbl0532.58016MR729188
  16. [Sh] M. Shub, The geometry and topology of dynamical systems, and algorithms for numerical problems, notes préparées pour des conférences données à D.D.A, Université de Peking, Bejing, Chine, Août-Septembre 1983. 
  17. [ShSm1&2] M. Shub AND S. Smale, Computational complexity on the geometry of polynomials and a theory of cost, PartI, Ann. Sci. E.N.S. (4) t.18 (1985), 107-161; Part II, SIAM J. Computing15 (1986), 145-161. Zbl0625.65036MR822199
  18. [ShSm3] M. Shub AND S. Smale, On the existence of generally convergent algorithms, Jour. of Complexity2 (1986), 2-11. Zbl0595.65048MR925341
  19. [STW] M. Shub, D. Tischler AND R. Williams, The Newtonian graph of a complex polynomial, soumis à SIAM J. of Math. Analysis. Zbl0653.58013MR924558
  20. [Sm1] S. Smale, A Convergent process of price adjustment and global Newton methods, J. Math. Econom.3 (1976), 107-120. Zbl0354.90018MR411577
  21. [Sm2] S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc.4 (1981), 107-120. Zbl0456.12012MR590817
  22. [Sm3] S. Smale, The Problem of the average speed of the simplex method, in "Mathematical Programming: the state of the Art", Bonn1982 (editors Bachem et al.), Springer, 1983. Zbl0552.90059MR717413
  23. [Sm4] S. Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc.13 (1985), 87-121. Zbl0592.65032MR799791
  24. [Sm5] S. Smale, Newton's method estimates from data at one point, à paraître dans: Proceedings of a Conference at Laramie in Honor of Gail S. Young, SpringerNew York (1986). Zbl0613.65058MR870648
  25. [Sm6] S. Smale, Algorithms for solving equations, MSRI Berkeley, 1986 (texte écrit pour le congrès mondial de Berkeley). Zbl0665.65058MR934223

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.