Algebraic Fermi curves

Chris Peters

Séminaire Bourbaki (1989-1990)

  • Volume: 32, page 239-258
  • ISSN: 0303-1179

How to cite

top

Peters, Chris. "Algebraic Fermi curves." Séminaire Bourbaki 32 (1989-1990): 239-258. <http://eudml.org/doc/110126>.

@article{Peters1989-1990,
author = {Peters, Chris},
journal = {Séminaire Bourbaki},
keywords = {algebraic Fermi curves; Bloch variety; density of states function},
language = {eng},
pages = {239-258},
publisher = {Société Mathématique de France},
title = {Algebraic Fermi curves},
url = {http://eudml.org/doc/110126},
volume = {32},
year = {1989-1990},
}

TY - JOUR
AU - Peters, Chris
TI - Algebraic Fermi curves
JO - Séminaire Bourbaki
PY - 1989-1990
PB - Société Mathématique de France
VL - 32
SP - 239
EP - 258
LA - eng
KW - algebraic Fermi curves; Bloch variety; density of states function
UR - http://eudml.org/doc/110126
ER -

References

top
  1. [AM] Ashcroft, N. and N. Mermin : Solid State Physics. Holt,Rinehard and Winston1976. 
  2. [B1] Bättig, D.: A toroidal compactification of the two dimensional Bloch variety. Thesis, ETHZürich1988. 
  3. [B2] Bättig, D.: A toroidal compactification of the complex Fermi surface, preprint 1989. 
  4. [BKT] Bättig, D., H. Knörrer, E. Trubowitz: A directional compactification of the complex Fermi surface, preprint 1989. 
  5. [D] Deligne, P.: Théorie de Hodge 2, Publ. Math IHÉS40, 5-57 (1972). Zbl0219.14007MR498551
  6. [ERT] Eskin, G., J. Ralston, E. Trubowitz : On isospectral periodic potentials in Rn. Comm. Pure Appl. Math.37 (1984) 647-676. Zbl0574.35021MR752594
  7. [G] Gerard, G. : Resonance theory for periodic Schrödinger operators, preprint 1989. MR1046265
  8. [GH] Griffiths, P. and J. Harris: Principles of Algebraic Geometry, John Wiley & Sons1978. Zbl0836.14001MR507725
  9. [GKT1] Gieseker, D., H. Knörrer and E. Trubowitz: An overview of the geometry of Algebraic Fermi curves, Preprint UCLA1989. Zbl0751.14021MR1108630
  10. [GKT2] Gieseker, D., H. Knörrer and E. Trubowitz: The geometry of algebraic Fermi curves, manuscript 1989. Zbl0778.14011
  11. [K] Kappeler, T. : On isospectral potentials on a discrete lattice II, to apear in Adv. in Appl. Math. Zbl0675.35023MR968676
  12. [KT] Knörrer, H. and E. Trubowitz: A directional compactification of the complex Bloch variety, to appear in Comm. Math. Helv.1990. Zbl0723.32006MR1036133
  13. [M] Moerbeke, P. van: About isospectral deformations of discrete laplacians. In Global Analysis, Proc. Calgary 1978,SpringerLecture Notes in Math.755 (1978), 313-370. Zbl0464.58019MR564908
  14. [Mu] Mumford, D.: An algebro-geometric construction of commuting operators and of solutions of the Toda lattice equation, Korteweg de Vries equation and related non-linear equations.Proc. Int. Symp. Alg. Geometry, Kyoto1977, 115-153. Zbl0423.14007MR578857
  15. [MT] McKean, H., E. Trubowitz: Hills operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math29, 143-226 (1976). Zbl0339.34024MR427731
  16. [PS] Peters, C. and J. Stienstra: A pencil of K3- surfaces related to Apéry's recurrence for ((3) and Fermi surfaces for potential zero. In : Arithmetic of Complex Manifolds, Proc. Erlangen 1988, SpringerLecture Notes in Mathematics1399 pp 110-127, 1989. Zbl0701.14037MR1034260
  17. [VKN] Veselov, A., I. Krichever, S. Novikov: Two-dimensional periodic Schrödinger operators and Prym's Θ-functions, In Geometry of Today, Roma 1984, Birkh. Verlag1985, 283-301. Zbl0575.35084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.