Bases des représentations des groupes simples complexes

Olivier Mathieu

Séminaire Bourbaki (1990-1991)

  • Volume: 33, page 421-442
  • ISSN: 0303-1179

How to cite

top

Mathieu, Olivier. "Bases des représentations des groupes simples complexes." Séminaire Bourbaki 33 (1990-1991): 421-442. <http://eudml.org/doc/110145>.

@article{Mathieu1990-1991,
author = {Mathieu, Olivier},
journal = {Séminaire Bourbaki},
keywords = {canonical bases; quantum groups; survey; crystal bases; irreducible representations; complex semisimple Lie algebras},
language = {fre},
pages = {421-442},
publisher = {Société Mathématique de France},
title = {Bases des représentations des groupes simples complexes},
url = {http://eudml.org/doc/110145},
volume = {33},
year = {1990-1991},
}

TY - JOUR
AU - Mathieu, Olivier
TI - Bases des représentations des groupes simples complexes
JO - Séminaire Bourbaki
PY - 1990-1991
PB - Société Mathématique de France
VL - 33
SP - 421
EP - 442
LA - fre
KW - canonical bases; quantum groups; survey; crystal bases; irreducible representations; complex semisimple Lie algebras
UR - http://eudml.org/doc/110145
ER -

References

top
  1. [BLM] A. Beilinson, G. Lusztig et R. McPherson - A geometric setting for quantum groups, Duke Math. J.61 (1990), 655-. Zbl0713.17012MR1074310
  2. [BZ] A. Berenstein et A. Zelevinsky - Tensor product multiplicities and convex polytopes in partition space, preprint (1989). MR1048510
  3. [DJM] E. Date, M. Jimbo et T. Miwa - Representation of Uqgln(C) at q = 0 and the Robinson-Shensted correspondencePhys. and Math. of strings (vol. à la mémoire de V. Kniznik) W. Sc., Singapour (1990), 185-211. Zbl0743.17018MR1104259
  4. [DK] C. De Concini et D. Kazhdan - Special bases for Sn and GLn, Isr. J. Math.40 (1981), 416-432. Zbl0537.20006
  5. [Dr] V. Drinfeld - Hopf algebras and the Yang-Baxter equations, Soviet Math. Dokl.32 (1985), 254-258. Zbl0588.17015
  6. [Gi] V. Ginzburg - Lagrangian constructions of the enveloping algebra of U(sln), preprint (1990). 
  7. [Ji] M. Jimbo - A q-difference of U(g) and the Yang-Baxter equation, Lett. Math. Phys.10 (1985), 63-69. Zbl0587.17004MR797001
  8. [Ka1] M. Kashiwara - Crystallizing the q-analog of universal enveloping algebras, Comm. Math. Phys.133 (1990), 249-260. Zbl0724.17009MR1090425
  9. [Ka2] M. Kashiwara - On crystal bases of the Q-analog of universal enveloping algebras, preprint (1990). MR1071626
  10. [Ka3] M. Kashiwara - Crystallizing the q-analogue of universal enveloping algebras, Proceedings ICM90 (Kyoto). Zbl0749.17017
  11. [KN] M. Kashiwara et T. Nakashima - Crystal graphs of the q-analog of classical Lie algebras, RIMS preprint. 
  12. [KMN1] M. Kashiwara, S. Kang, K. Misra, T. Miwa, T. Nakashima et S. Nakayashiki - Affine crystal and vertex models (en préparation). Zbl0925.17005
  13. [KMN2] M. Kashiwara, S. Kang, K. Misra, T. Miwa, T. Nakashima et S. Nakayashiki - Perfect crystals of quantized enveloping algebras (en préparation). 
  14. [LMS] V. Lakshmibai, C. Musili et C. Seshadri - Geometry of G/P IV, Proc. Ind. Acad. Sc.99 (1979), 279-362. Zbl0447.14013MR553746
  15. [L] V. Lakshmibai - Standard monomial theory for SLn, preprint (1991). MR1166815
  16. [LS] V. Lakshmibai et C. Seshadri - Geometry of G/P V, J. of Algebra100 (1986), 462-557. Zbl0618.14026MR840589
  17. [Li] P. Littleman - A generalization of the Littlewood-Richardson rule, preprint (1987). MR1051307
  18. [Lu1] G. Lusztig - Canonical bases arising from quantized enveloping algebras I, Journal of A.M.S.3 (1990), 447-498. Zbl0703.17008MR1035415
  19. [Lu2] G. Lusztig - Canonical bases arising from quantized enveloping algebras II, preprint (1990). Zbl0776.17012MR1182165
  20. [Lu3] G. Lusztig - Quivers, perverse sheaves and quantized enveloping algebras, preprint. Zbl0738.17011MR1088333
  21. [Lu4] G. Lusztig - Quivers, perverse sheaves and quantized enveloping algebras, preprint. Zbl0738.17011MR1088333
  22. [Ma] O. Mathieu - Good bases for G-modules, Geometrica Dedicata (Tits volume)36 (1990), 51-66. Zbl0704.20035MR1065212
  23. [MM] K. Misra et T. Miwa - Crystal basis for the basic representation of Uq(sln), preprint. 
  24. [N] T. Nakashima - A basis of symmetric tensor representations for the quantum analogue of the Lie algebras An, Bn, Cn, Dn, Publ. RIMS, Kyoto Univ.26 (1990), 723-733. Zbl0744.17017MR1081514
  25. [Ri] C. Ringel - Hall algebras and quantum troups, Inv. Math.101 (1990), 583-592. Zbl0735.16009MR1062796
  26. [St] R. Steinberg - A general Clebsch-Gordan theorem, Bull. Amer. Math. Soc.67 (1961), 406-407. Zbl0115.25605MR126508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.