Bases canoniques et applications

Peter Littelmann

Séminaire Bourbaki (1997-1998)

  • Volume: 40, page 287-306
  • ISSN: 0303-1179

How to cite

top

Littelmann, Peter. "Bases canoniques et applications." Séminaire Bourbaki 40 (1997-1998): 287-306. <http://eudml.org/doc/110249>.

@article{Littelmann1997-1998,
author = {Littelmann, Peter},
journal = {Séminaire Bourbaki},
keywords = {canonical bases; totally positive matrix; Kazhdan-Lusztig polynomials},
language = {fre},
pages = {287-306},
publisher = {Société Mathématique de France},
title = {Bases canoniques et applications},
url = {http://eudml.org/doc/110249},
volume = {40},
year = {1997-1998},
}

TY - JOUR
AU - Littelmann, Peter
TI - Bases canoniques et applications
JO - Séminaire Bourbaki
PY - 1997-1998
PB - Société Mathématique de France
VL - 40
SP - 287
EP - 306
LA - fre
KW - canonical bases; totally positive matrix; Kazhdan-Lusztig polynomials
UR - http://eudml.org/doc/110249
ER -

References

top
  1. [A] T. Ando, Totally positive matrices, Linear Alg. Appl.90, (1987), 165-219. Zbl0613.15014
  2. [Bo] N. Bourbaki, Groupes et algèbres de Lie, Ch. 2,3, Hermann, Paris, (1972). Zbl0244.22007
  3. [BBD] A. Beilinson, J. Bernstein et P.. Deligne, Faisceaux pervers, Astérisque100, (1982). Zbl0536.14011
  4. [BFZ] A. Berenstein, S. Fomin et A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math.122, (1996), 49-149. Zbl0966.17011
  5. [BZ] A. Berenstein et A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv.72, (1997), 128-166. Zbl0891.20030
  6. [CP] V. Chari et A. Pressley, A guide to quantum groups, Cambridge University Press, (1994). Zbl0839.17009
  7. [Cr] C. Cryer, The L U-factorization of totally positive matrices, Linear Algebra Appl.7, (1973), 83-92. Zbl0274.15004
  8. [D] V.V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra111 (1987), 483-506. Zbl0656.22007
  9. [De] P. Desnanot, Complément de la théorie des équations du premier degré, Volland jeune, Paris, (1819). 
  10. [F] M. Fekete, Über ein Problem von Laguerre, Briefwechsel zwischen M. Fekete und G. Pólya, Rendiconti del Circ. Mat. Palermo34 (1912), 89-100, 110-120. JFM43.0145.02
  11. [FZ] S. Fomin et A. Zelevinsky, Double Bruhat cells and total positivity, Prépublication de l'I.R.M.A.8, Strasbourg (1998). 
  12. [FK] I. Frenkel et M. Khovanov, Canonical bases in tensor products and graphical calculus for Uq(sl2), Duke Math. J.87 (1997), 409-480. Zbl0883.17013
  13. [FKK] I. Frenkel, M. Khovanov et A. Kirillov Jr., Kazhdan-Lusztig polynomials and canonical basis, à paraître dans J. Transf. Groups. Zbl0918.17012
  14. [GK] F. Gantmacher et M. Krein, Sur les matrices oscillatoires, C. R. Acad. Sci. Paris201 (1935), 577-579. Zbl0012.28903
  15. [GP] M. Gasca, et J.M. Peña, On the characterization of totally positive matrices, Approximation theory, spline functions and applications, Kluwer, (1992), 357- 364. Zbl0758.15014
  16. [Ce] M. Geck, Representations of Hecke Algebras at Roots of Unity, Sém. Bourbaki, exp. n° 836, novembre 1997, à paraître dans Astérisque. Zbl0931.20006
  17. [J] M.A. Jimbo, A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys.11 (1986), 247-252. Zbl0602.17005
  18. [Ka1] M. Kashiwara, On the crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J.63 (1991), 465-516. Zbl0739.17005
  19. [Ka2] M. Kashiwara, Crystal bases of modified quantized enveloping algebras, Duke Math. J.73 (1994), 383-413. Zbl0794.17009
  20. [KL] D. Kazhdan et G. Lusztig, Representation of Coxeter groups and Hecke algebras, Inv. Math.53 (1979), 165-184. Zbl0499.20035
  21. [Ko] B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math.34 (1979), 195-338. Zbl0433.22008
  22. [LS] A. Lascoux et M.-P. Schützenberger, Polynômes de Kazhdan-Lusztig pour les grassmanniennes, Astérisque87-88 (1981), 249-266. Zbl0504.20007
  23. [Lo] C. Loewner, On totally positive matrices, Math. Z.63 (1955), 338-340. Zbl0068.25004
  24. [Lu1] G. Lusztig, Introduction to quantum groups, Progress in Math.110, Birkhäuser, Boston, 1993. Zbl0788.17010
  25. [Lu2] G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry: in honor of Bertran Kostant, Progress in Math.123, Birkhäuser, Boston (1994), 531-568. Zbl0845.20034
  26. [Lu3] G. Lusztig, Total positivity and canonical bases, Algebraic groups and Lie Groups, Austr. Math. Soc. Lect. Series9, Cambridge Univ. Press (1997), 281-295. Zbl0890.20034
  27. [Lu4] G. Lusztig, Total positivity in partial flag manifolds, Representation Theory2 (1998), 70-78. Zbl0895.14014
  28. [Lu5] G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Common trends in mathematics and quantum field theories, Progr. Theor. Phys. Suppl.102 (1990), 175-201. Zbl0776.17012
  29. [Lu6] G. Lusztig, Canonical bases arising from quantized enveloping algebras, JAMS. 3 (1990), 447-498. Zbl0703.17008
  30. [Lu7] G. Lusztig, Quivers, perverse sheaves and quantum enveloping algebras, JAMS4 (1991), 365-421. Zbl0738.17011
  31. [Lu8] G. Lusztig, Introduction to total positivity, prépublication (1998). 
  32. [Ma] O. Mathieu, Bases des représentations des groupes simples complexes, Sém. Bourbaki, exp. n° 743, Astérisque201-203 (1991), 421-442. Zbl0755.17002
  33. [Mu] T. Muir, The theory of determinants in the historical order of development, 2nd edition, vol. 1, Macmillan, London (1906). JFM37.0181.02
  34. [R1] K. Rietsch, The infinitesimal cone of a totally positive semigroup, Proc. AMS125 (1997), 2565-2570. Zbl0894.22011
  35. [R2] K. Rietsch, An algebraic cell decomposition of the nonnegative part of a flag variety, à paraître dans J. Algebra. Zbl0920.20041
  36. [R3] K. Rietsch, Intersections of Bruhat cells in real flag varieties, Internat. Math. Res. Notices13 (1997), 623-640. Zbl0889.20022
  37. [Sc] I. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z.32 (1930), 321-322. Zbl56.0106.06JFM56.0106.06
  38. [W] A.M. Whitney, A reduction theorem for totally positive matrices, J. d'Analyse Math.2 (1952), 88-92. Zbl0049.17104
  39. [Z] A. Zelevinsky, Small resolutions of Schubert varieties, Funk. Anal. App.17 (1983), 75-77. Zbl0559.14006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.