Variétés riemanniennes autoduales

Paul Gauduchon

Séminaire Bourbaki (1992-1993)

  • Volume: 35, page 151-186
  • ISSN: 0303-1179

How to cite


Gauduchon, Paul. "Variétés riemanniennes autoduales." Séminaire Bourbaki 35 (1992-1993): 151-186. <>.

author = {Gauduchon, Paul},
journal = {Séminaire Bourbaki},
keywords = {Weyl tensor; twistor space; fundamental group; complex projective plane},
language = {fre},
pages = {151-186},
publisher = {Société Mathématique de France},
title = {Variétés riemanniennes autoduales},
url = {},
volume = {35},
year = {1992-1993},

AU - Gauduchon, Paul
TI - Variétés riemanniennes autoduales
JO - Séminaire Bourbaki
PY - 1992-1993
PB - Société Mathématique de France
VL - 35
SP - 151
EP - 186
LA - fre
KW - Weyl tensor; twistor space; fundamental group; complex projective plane
UR -
ER -


  1. [A-K-L] M. Anderson, P.B. Kronheimer, C. LeBrun. Complete Ricci-flat Kähler manifolds of infinite topological type. Comm. Math. Phys.125 (1989), 643-660. Zbl0734.53051MR1024931
  2. [At] M.F. Atiyah. The geometry of Yang-Mills fields. Lezioni Fermiane. Scuola Superiore Pisa. 1979. Zbl0435.58001MR554924
  3. [A-H-S] M.F. Atiyah, N.J. Hitchin, I.M. Singer. Self-duality in four-dimensional Riemannian Geometry. Proc. R. Soc. Lond. A362 (1978), 425-461. Zbl0389.53011MR506229
  4. [Ba-Ea] R.J. Baston, M.G. Eastwood. The Penrose Transform. Its Interaction with Representation Theory. Clarendon Press. Oxford. 1989. Zbl0726.58004MR1038279
  5. [Be1] A.L. Besse. Géométrie riemannienne en dimension4 (1981). Cedic-F. Nathan. MR769127
  6. [Be2] A.L. Besse. Einstein manifolds. Ergebnisse der Math.10, 1987, Springer. Zbl0613.53001MR867684
  7. [Bo] J.P. Bourguignon. Stabilité par déformation non-linéaire de la métrique de Minkowski. Séminaire Bourbaki n°740 Juin 1991Astérisque201- 202-209. Zbl0754.53060MR1157847
  8. [Ca] F. Campana. On twistor spaces of the class C. J. Diff. Geom.33 (1991), 541-549. Zbl0694.32017MR1094468
  9. [De] A. Derdzinski. Self-dual Kähler manifolds and Einstein manifolds of dimension four. Comp. Math.49 (1983), 405-433. Zbl0527.53030MR707181
  10. [Do] S.K. Donaldson. An application of gauge theory to four-dimensional topology. J. Diff. Geom.18 (1983), 279-315. Zbl0507.57010MR710056
  11. [Do-Kr] S.K. Donaldson, P.B. Kronheimer. The Geometry of Four-Manifolds. Clarendon Press. Oxford. 1990. Zbl0820.57002MR1079726
  12. [Do-Ve] A. Douady - J.L. Verdier. Les équations de Yang-MillsSéminaire ENS77-78, Astérisque71-72. Zbl0457.14009MR589891
  13. [DV] M. Dubois-Violette. Structures complexes au-dessus des variétés, applications. dans : "Mathématiques et physique" Séminaire de l'E.N.S.79-82, Ed. L. Boutet de Monvel, A. Douady, J.L. Verdier. Prog. in Math.37 (1983) Birkhäuser. (1981). Zbl0522.53029MR728412
  14. [Do-Fr] S.K. Donaldson, R. Friedman. Connected sum of self-dual manifolds and deformations of singular spaces. Nonlinearity2 (1989), 197-239. Zbl0671.53029MR994091
  15. [Ea-Le] M.G. Eastwood - C. LeBrun. Fattening complex manifolds : curvature and Kodaira-Spencer maps. J. Geom. Phys.8 (1992), 123-146. Zbl0748.32017MR1165875
  16. [E-P-W] M.G. Eastwood, R. Penrose, R.O. Wells, Jr. Cohomology and massless fields. Comm. Math. Phys.78 (1981), 305-351. Zbl0465.58031MR603497
  17. [E-G-H] T. Eguchi, P.B. Gilkey, A.J. Hanson. Gravitation, Gauge theories and Differential Geometry. Phys. Reports66 (1980), 215-397. MR598586
  18. [Fl] A. Floer. Self-dual conformal structures on lCP2. J. Diff. Geom.33 (1991), 551-573. Zbl0736.53046MR1094469
  19. [Fr] M.H. Freedman. The topology of four-dimensional manifolds. J. Diff. Geom.17 (1992), 357-454. Zbl0528.57011MR679066
  20. [Fr-Ku] T. Friedrich - H. Kurke. Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. MathNachr.106 (1982), 271- 299. Zbl0503.53035MR675762
  21. [Fr-Uh] D.S. Fried - K.K. Uhlenbeck. Instantons and four-manifoldsMSRI Publ. Vol. 1 (1984). Springer. Zbl0559.57001MR757358
  22. [Ga] P. Gauduchon. Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale. Ann. Scuola Norm. Sup. Pisa XVIII (1991), 563-629. Zbl0763.53034MR1153706
  23. [Gi-Ha] G.W. Gibbons - S.W. Hawking. Gravitational multi-instantons. Phys. Lett. B.78 (1978), 430-432. 
  24. [Hi1] N.J. Hitchin. Polygons and Gravitons. Math. Proc. Camb. Phil. Soc.83, (1979), 465-476. Zbl0405.53016MR520463
  25. [Hi2] N.J. Hitchin. Linear field equations on self-dual spaces. Proc. R. Soc. Lond. A370 (1980), 173-191. Zbl0436.53058MR563832
  26. [Hi3] N.J. Hitchin. Kählerian Twistor SpacesProc. R. Soc. Lond.43 (1981), 133-150. Zbl0474.14024MR623721
  27. [Hi4] N.J. Hitchin. The Yang-Mills equation and the topology of four-manifolds [d'après S.K. Donaldson], Séminaire Bourbaki n° 606, fév. 1983Astérique105-106. Zbl0533.57007MR728987
  28. [Hi5] N.J. Hitchin. Hyperkähler manifolds. Séminaire Bourbaki n°748 nov. 1991. 
  29. [Hu] J. Hurtubise. The intersection of two quadrics in P5(C) as a twistor space. Ann. Glob. Analysis Geom. Vol. 3 (1985), 185-195. Zbl0579.32048MR809637
  30. [Itl] M. Itoh. Half-conformally Flat Structures and the Deformation Obstruction Space. A paraître dans Math. J. Tsukuba. Zbl0809.53038
  31. [It2] M. Itoh. Moduli of Half Conformally Flat Structures. A paraître aux Math. Ann.. Zbl0788.58011MR1233492
  32. [Ko] K. Kodaira. A theorem of completness of characteristic systems for analytic families of compact submanifolds of a complex manifold. Ann. of Math.75 (1962), 146-162. Zbl0112.38404MR133841
  33. [Ki-Ko] A.D. King - D. Kotschick. The deformation theory of anti-self-dual conformal structures. Math. Ann.294 (1992), 591-609. Zbl0765.58005MR1190446
  34. [Ki-Po] J. Kim - M. Pontecorvo. A new method of constructing scalar-flat Kähler metrics (1993). Preprint. 
  35. [Kr-Ku] B. Kreussler - H. Kurke. Twistor spaces over the connected sum of 3 projective planes. Comp. Math.82 (1992), 25-55. Zbl0766.53049MR1154160
  36. [Ku] H. Kurke. Classification of twistor spaces with a pencil of surfaces of degree 1, I. A paraître aux Math. Nachr. Zbl0820.53052MR1235296
  37. [La] J. Lafontaine. Remarques sur les variétés conformément plates. Math. Ann.259 (1982), 313-319. Zbl0469.53036MR661199
  38. [Le1] C. LeBrun. Scalar-flat Kähler matrics. J. reine angew. Math.420 (1991), 161-172. Zbl0727.53067MR1124569
  39. [Le2] C. LeBrun. Explicit self-dual metrics on CP2#...#CP2. J. Diff. Geom.34 (1991), 233-253. Zbl0725.53067MR1114461
  40. [Le3] C. LeBrun. Asymptotically-Flat Scalar Kähler Surfaces. Preprint. 
  41. [Le-Si 1] C. LeBrun - M.A. Singer. Existence and Deformation Theory for Scalar-Flat Kähler Metrics on Compact Complex Surfaces. Inv. Math.112 (1993), 273-313. Zbl0793.53067MR1213104
  42. [Le-Si 2] C. LeBrun - M.A. Singer. A Kummer-type construction of self-dual 4-manifolds (1993). Preprint. 
  43. [Lw] H. Blaine Lawson, Jr. The theory of gauge fields in four dimensions. CBMS58 (1985). Zbl0597.53001
  44. [Pe1] R. Penrose. Non-linear gravitons and curved twistor theory. Gen. Relativity Grav.7 (1976), 31-52. Zbl0354.53025MR439004
  45. [Pe2] R. Penrose. The complex Geometry of the Natural Word. Proc. Intern. Congress Math. Helsinki, (1978). Zbl0425.53033
  46. [Pe3] R. Penrose. On the origin of twistor theory. in : Gravitation and Geometry, in honour of I. Robinson, ed. W. Rindler and A. Trautman. Bibliopolis, Naples (1987). Zbl0656.53005MR938546
  47. [Pe-Ri] R. Penrose - W. Rindler. Spinors and Space-time 1,2. Cambridge U. Press (1984-1986). Zbl0591.53002
  48. [Po1] Y.S. Poon. Compact self-dual manifolds with positive scalar curvature. J. Diff. Geom.24 (1986), 97-132. Zbl0583.53054MR857378
  49. [Po2] Y.S. Poon. Algebraic dimension of twistor spaces. Math. Ann.282 (1988), 621-627. Zbl0665.32014MR970223
  50. [Pn1] M. Pontecorvo. Algebraic dimension of twistor spaces and scalar curvature of anti-self-dual metrics. Math. Ann.291 (1991), 113-122. Zbl0747.32021MR1125011
  51. [Pn2] M. Pontecorvo. Twistor spaces of anti-self-dual Hermitian surfaces. Trans. Am. Math. Soc.331 (1992), 653-661. Zbl0754.53053MR1050087
  52. [Pr] M.J. Perry. Gravitational instantons, in : Seminar on Differential Geometry, Ed. S.T. Yau (1982), Princeton U. Press102. Zbl0477.53064MR645760
  53. [Sa] S. Salamon. Topics in f our-dimensional Riemannian Geometry. Geometry Seminar "Luigi Bianchi" (1982). Ed.E. Vesentini. LNM1022. Springer. Zbl0532.53035
  54. [Si] C.T. Simpson. Higgs bundles and local systems. Publ. math. IHES n°75 (1992), 5-95. Zbl0814.32003MR1179076
  55. [Si-Th] I.M. Singer - J.A. Thorpe. The curvature of 4-dimensional Einstein spaces. Global Analysis. Papers in honour of K. Kodaira. Ed. D.C. Spencer and S.I. Iyanaga (1969) Princeton Math. Series 29. Zbl0199.25401MR256303
  56. [Ta1] C.H. Taubes. Self-dual Yang-Mills connections on non-self-dual 4- manifolds. J. Diff. Geom.17 (1982), 139-170. Zbl0484.53026MR658473
  57. [Ta2] C.H. Taubes. Self-dual connections on 4-manifolds with indefinite intersection metrics. J. Diff. Geom.19 (1984), 517-560. Zbl0552.53011MR755237
  58. [Ta3] C.H. Taubes. The stable topology of self-dual moduli spaces. J. Diff. Geom.29 (1989), 163-230. Zbl0669.58005MR978084
  59. [Ta4] C.H. Taubes. The existence of anti-self-dual conformal structures. J. Diff. Geom.36 (1992), 163-253. Zbl0822.53006MR1168984
  60. [TN] Twistor Newsletter (périodique). Mathematical Institute. Oxford. 
  61. [To] P. Topiwalla. A new proof of the existence of Kähler-Einstein metrics on K3, I, II. Inv. Math.89 (1987), 425-454. Zbl0634.14026MR894388
  62. [Vi] M. Ville. Twistor examples of algebraic dimension zero threefolds. Inv. Math.10 (1991), 537-546. Zbl0722.32016MR1091618
  63. [Ya1] S.T. Yau. On the Curvature of Compact Hermitian Manifolds. Inv. Math.25 (1974), 213-239. Zbl0299.53039MR382706
  64. [Ya2] S.T. Yau. Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. USA74 (1977), 1798-1799. Zbl0355.32028MR451180

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.