Self-dual Kähler manifolds and Einstein manifolds of dimension four

Andrzej Derdziński

Compositio Mathematica (1983)

  • Volume: 49, Issue: 3, page 405-433
  • ISSN: 0010-437X

How to cite

top

Derdziński, Andrzej. "Self-dual Kähler manifolds and Einstein manifolds of dimension four." Compositio Mathematica 49.3 (1983): 405-433. <http://eudml.org/doc/89617>.

@article{Derdziński1983,
author = {Derdziński, Andrzej},
journal = {Compositio Mathematica},
keywords = {self-dual metrics; 4-dimensional Einstein metrics; locally symmetric; Kaehler metrics; extremal Kaehler metrics},
language = {eng},
number = {3},
pages = {405-433},
publisher = {Martinus Nijhoff Publishers},
title = {Self-dual Kähler manifolds and Einstein manifolds of dimension four},
url = {http://eudml.org/doc/89617},
volume = {49},
year = {1983},
}

TY - JOUR
AU - Derdziński, Andrzej
TI - Self-dual Kähler manifolds and Einstein manifolds of dimension four
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 49
IS - 3
SP - 405
EP - 433
LA - eng
KW - self-dual metrics; 4-dimensional Einstein metrics; locally symmetric; Kaehler metrics; extremal Kaehler metrics
UR - http://eudml.org/doc/89617
ER -

References

top
  1. [1] T. Adati and T. Miyazawa: On a Riemannian space with recurrent conformal curvature. Tensor, N. S.18 (1967) 348-354. Zbl0152.39103MR215251
  2. [2] M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. LondonA362 (1978) 425-461. Zbl0389.53011MR506229
  3. [3] R. Bach: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Zeitsch.9 (1921) 110-135. Zbl48.1035.01MR1544454JFM48.1035.01
  4. [4] L. Bérard Bergery: Sur de nouvelles variétés riemanniennes d'Einstein, preprint, Institut Elie Cartan, Université de Nancy I (1981). Zbl0544.53038MR725678
  5. [5] S. Bochner: Vector fields and Ricci curvature. Bull. Amer. Math. Soc.52 (1946) 776-797. Zbl0060.38301MR18022
  6. [6] A. Borel: Compact Clifford-Klein forms of symmetric spaces. Topology2 (1963) 111-122. Zbl0116.38603MR146301
  7. [7] J.P. Bourguignon: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein. Invent. Math.63 (1981) 263-286. Zbl0456.53033MR610539
  8. [8] E. Calabi: Extremal Kähler metrics. Seminar on Differential Geometry (edited by Shing-Tung Yau). Princeton Univ. Press and Univ. of Tokyo Press, Princeton (1982), pp. 259-290. Zbl0487.53057MR645743
  9. [9] J. Carrell, A. Howard and C. Kosniowski: Holomorphic vector fields on complex surfaces. Math. Ann.204 (1973) 73-81. Zbl0242.14008MR372262
  10. [10] A. Derdziński: Exemples de métriques de Kähler et d'Einstein auto-duales sur le plan complexe. Géométrie riemannienne en dimension 4 (Séminaire Arthur Besse 1978/79). Cedic/Fernand Nathan, Paris (1981), pp. 334-346. Zbl0477.53025
  11. [11] A. Derdziński and A. Rigas: Unflat connections in 3-sphere bundles over S4. Trans. Amer. Math. Soc.265 (1981) 485-493. Zbl0465.53028MR610960
  12. [12] A. Derdziński and W. Roter: On conformally symmetric manifolds with metrics of indices 0 and 1. Tensor, N. S.31 (1977) 255-259. Zbl0379.53027MR467596
  13. [13] D. Deturck and J.L. Kazdan: Some regularity theorems in Riemannian geometry. Ann. Sci. Ec. Norm. Sup. (4) 14 (1981) 249-260. Zbl0486.53014MR644518
  14. [14] H. Donnelly: Topology and Einstein Kähler metrics. J. Differential Geometry11 (1976) 259-264. Zbl0332.32004
  15. [15] TH. Friedrich and H. Kurke: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. Math. Nachrichten (to appear). Zbl0503.53035MR675762
  16. [16] A. Gray: Invariants of curvature operators of four-dimensional Riemannian manifolds. Proc. 13th Biennial Seminar Canadian Math. Congress (1971), vol. 2, 42-65. Zbl0278.53034MR405446
  17. [17] N. Hitchin: Compact four-dimensional Einstein manifolds. J. Differential Geometry9 (1974) 435-441. Zbl0281.53039MR350657
  18. [18] N. Hitchin: Kählerian twistor spaces. Proc. London Math. Soc.43 (1981133-150. Zbl0474.14024MR623721
  19. [19] G.R. Jensen: Homogeneous Einstein spaces of dimension four. J. Differential Geometry3 (1969) 309-349. Zbl0194.53203MR261487
  20. [20] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, vol. I. Interscience, New York (1963). Zbl0119.37502MR152974
  21. [21] A. Lichnerowicz: Espaces homogènes kählériens. Colloque de Géométrie Différentielle, Strasbourg (1953) 171-201. Zbl0053.11603MR66017
  22. [22] A. Lichnerowicz: Isométries et transformations analytiques d'une variété kählérienne compacte. Bull. Soc. Math. France87 (1959) 427-437. Zbl0192.28403MR114187
  23. [23] R. Mandelbaum and B. Moishezon: The topological type of algebraic surfaces: Hypersurfaces in P3(C). Proc. Symposia in Pure Math.30 (1977), Part I, 277-283. Zbl0355.57002MR478178
  24. [24] Y. Matsushima: Remarks on Kähler-Einstein manifolds. Nagoya Math. J.46 (1972) 161-173. Zbl0249.53050MR303478
  25. [25] J.W. Milnor and J.D. Stasheff: Characteristic Classes. Princeton University Press, Princeton (1974). Zbl0298.57008MR440554
  26. [26] D. Page: A compact rotating gravitational instanton. Phys. Lett.79B (1978) 235-238. 
  27. [27] A. Polombo: Nombres caractéristiques d'une surface kählérienne compacte. C. R. Acad. Sci. ParisA283 (1976) 1025-1028. Zbl0339.53041MR431066
  28. [28] W. Roter: Some existence theorems on conformally recurrent manifolds (in preparation). 
  29. [29] I.M. Singer and J.A. Thorpe: The curvature of 4-dimensional Einstein spaces. Global Analysis, Papers in Honor of K. Kodaira, Princeton (1969) 355-365. Zbl0199.25401MR256303
  30. [30] S. Tanno: Curvature tensors and covariant derivatives. Ann. Mat. Pura Appl.96 (1973) 233-241. Zbl0277.53013MR326619
  31. [31] J. Thorpe: Some remarks on the Gauss-Bonnet integral. J. of Math. Mech.18 (1969) 779-786. Zbl0183.50503MR256307
  32. [32] K. Yano and I. Mogi: On real representations of Kaehlerian manifolds. Ann. of Math.61 (1955) 170-189. Zbl0064.16302MR68291
  33. [33] S.-T. Yau: Calabi's conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. U.S.A.74 (1977) 1798-1799. Zbl0355.32028MR451180

Citations in EuDML Documents

top
  1. Sun-Yung A. Chang, Matthew J. Gursky, Paul C. Yang, A conformally invariant sphere theorem in four dimensions
  2. Mitsuhiro Itoh, Self-duality of Kähler surfaces
  3. Andrzej Derdziński, Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces
  4. A. Polombo, De nouvelles formules de Weitzenböck pour des endomorphismes harmoniques. Applications géométriques
  5. D. Burns, P. De Bartolomeis, Applications harmoniques stables dans P n
  6. Vestislav Apostolov, Oleg Muškarov, Weakly-Einstein hermitian surfaces
  7. Vestislav Apostolov, Paul Gauduchon, Selfdual Einstein hermitian four-manifolds
  8. Paul Gauduchon, Variétés riemanniennes autoduales
  9. Zindine Djadli, Opérateurs géométriques et géométrie conforme

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.