La sous-ellipticité pour le problème ¯ -Neumann dans un domaine pseudoconvexe de C n

Makhlouf Derridj

Séminaire Bourbaki (1994-1995)

  • Volume: 37, page 7-27
  • ISSN: 0303-1179

How to cite

top

Derridj, Makhlouf. "La sous-ellipticité pour le problème $\bar{\partial }$-Neumann dans un domaine pseudoconvexe de $C^n$." Séminaire Bourbaki 37 (1994-1995): 7-27. <http://eudml.org/doc/110209>.

@article{Derridj1994-1995,
author = {Derridj, Makhlouf},
journal = {Séminaire Bourbaki},
keywords = {subellipticity},
language = {fre},
pages = {7-27},
publisher = {Société Mathématique de France},
title = {La sous-ellipticité pour le problème $\bar\{\partial \}$-Neumann dans un domaine pseudoconvexe de $C^n$},
url = {http://eudml.org/doc/110209},
volume = {37},
year = {1994-1995},
}

TY - JOUR
AU - Derridj, Makhlouf
TI - La sous-ellipticité pour le problème $\bar{\partial }$-Neumann dans un domaine pseudoconvexe de $C^n$
JO - Séminaire Bourbaki
PY - 1994-1995
PB - Société Mathématique de France
VL - 37
SP - 7
EP - 27
LA - fre
KW - subellipticity
UR - http://eudml.org/doc/110209
ER -

References

top
  1. [1] A Andreotti and E Vesentini - Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Htes Ét. Sc. Publ. Math., Vol. 24-25. Zbl0138.06604
  2. [2] M.S. Baouendi and F. Trèves - About the holomorphic extension of C.R. functions on real hypersurfaces in complex space, Duke Math. J.51 (1984), 77-107. Zbl0564.32011MR744289
  3. [3] S. Bell and E. Ligocka - A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math.57 (1980), 283-289. Zbl0411.32010MR568937
  4. [4] T. Bloom - On the contact between complex manifolds and real hypersurfaces in C3, Trans. A.M.S.263 (1981), 515-529. Zbl0459.32005MR594423
  5. [5] T. Bloom and I. Graham - A geometric characterization of points of type m on real submanifolds of Cn, J. of Diff. Geom.12 (1977), 171-182. Zbl0436.32013MR492369
  6. [6] H. Boas and E. Straube - Sobolev estimates for the ∂-Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary, Math. Z.206 (1991), 81-88. Zbl0696.32008
  7. [7] H. Boas and E. Straube - On equality of line type and variety type of real hypersurfaces in Cn, J. of Geom. Anal., Vol. n° 2 (1992), 95-98. Zbl0749.32009MR1151753
  8. [8] D. Catlin - Necessary conditions for subellipticity of the ∂-Neumann problem, Annals of Math.117 (1983), 147-171. Zbl0552.32017
  9. [9] D. Catlin - Global regularity of the ∂-Neumann problem, Proc. Symp. Pure Math. Vol. 41 (1984). Zbl0578.32031
  10. [10] D. Catlin - Boundary invariants of pseudoconvex domainsAnnals of Math.120 (1984), 529-586. Zbl0583.32048MR769163
  11. [11] D. Catlin - Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Annals of Maths.126 (1987), 131-191. Zbl0627.32013
  12. [12] D. Catlin - Examples of sharp subelliptic estimates for the ∂-Neumann problem, non publié. 
  13. [13] D.C. Chang, A. Nagel and E. Stein - Estimates for the ∂-Neumann problem in pseudoconvex domains of finite type in C2, Acta Math.169 (1992), 153-228. Zbl0821.32011
  14. [14] J.D.' Angelo - Subelliptic estimates and failure of semi-continuity of orders of contactAnnals of Math.47 (1980), 955-957. Zbl0455.32010MR596122
  15. [15] J.D.' Angelo - Real hypersurfaces, orders of contact and applications, Annals of Math.115 (1982), 615-637. Zbl0488.32008MR657241
  16. [16] J.-P. Demailly - Estimations L2 pour l'opérateur ∂ d'un fibré vectoriel holomorphe, semi-positif, au-dessus d'une variété kählérienne complète, Ann. Sc. Ec. Norm. Sup 15 (1982), 457-511. Zbl0507.32021
  17. [17] M. Derridj - Régularité pour ∂ dans quelques domaines pseudoconvexes, J. of Diff. Geom.13 n° 4 (1978), 559-576. Zbl0435.35057
  18. [18] M. Derridj - Inégalités a priori et estimation sous-elliptique pour ∂ dans des ouverts non pseudoconvexes, Math. Ann. (1980), 27-48. Zbl0412.35070
  19. [19] K. Diederich and J.E. Fornaess - Pseudoconvex domains with real analytic boundary, Ann. of Math.107 (1978), 371-384. Zbl0378.32014MR477153
  20. [20] K. Diederich and G. Herbort - Geometric and analytic invariants on pseudoconvex domains. Comparison results, preprint. 
  21. [21] Y. Egorov - Subelliptic operators, Usp. Math. Nauk.30 (n° 3), 57-104, English transl. Russ. Math. Surv.30 (n° 3) (1975), 55-105. Zbl0331.35054MR410474
  22. [22] C. Fefferman - The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math.26 (1974), 1-65. Zbl0289.32012MR350069
  23. [23] G.B. Folland and J.J. Kohn - The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies75 (1972), Princ. Univ. Press, Princeton. Zbl0247.35093MR461588
  24. [24] J.E. Fornaess and N. Sibony - Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. Vol. 58 n° 3 (1989), 633-655. Zbl0679.32017MR1016439
  25. [25] P. Greiner - On subelliptic estimates for the ∂-Neumann problem in C2, J. of Diff. Geom.9 (1974), 239-250. Zbl0284.35054
  26. [26] P. Greiner and E. Stein - Estimates for the ∂-Neumann problem, Math. Notes n° 19, Princ. Univ. Press (1977). Zbl0354.35002
  27. [27] K. Hasegawa - Subelliptic estimates for the ∂-Neumann problem on certain weakly pseudoconvex domains, J. Fac. Sc. Univ. Tokyo, Sec. IA, vol. 39 n° 3 (1992), 385-418. Zbl0791.35086
  28. [28] B. Helffer et J. Nourrigat - Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Prog. in Math.58, Birkhaüser, 1985. Zbl0568.35003MR897103
  29. [29] L.H. Ho - Subellipticity of the ∂-Neumann problem on non-pseudoconvex domains, Trans. A.M.S.291 (1985), 43-73. Zbl0594.35074
  30. [30] L. Hörmander - An introduction to complex analysis in several variables, Van Nostrand, Princeton, 1966. Zbl0138.06203MR203075
  31. [31] L. Hormander - L2-estimates and existence theorems for the ∂-operator, Acta Math.113 (1965), 89-152. Zbl0158.11002
  32. [32] L Hörmander - Hypoelliptic second order equations, Acta Math.119 (1967), 147-171. Zbl0156.10701MR222474
  33. [33] L. Hörmander - Subelliptic operators. Seminar on singularities of solutions of linear P.D.E., Ann. of Math. Studies91 (1978), Princeton. Zbl0446.35086MR547019
  34. [34] N. Kerzman - The Bergman kernel. Differentiability at the boundary, Math. Ann.195 (1972), 149-158. Zbl0216.10503MR294694
  35. [35] J.J. Kohn - Harmonic integrals on strongly pseudoconvex manifolds I, Ann. of Math.78 (1963), 112-148 ; II, Ann. of Math.79 (1964), 450-472. Zbl0178.11305
  36. [36] J.J. Kohn -Global regularity for ∂ on weakly pseudoconvex manifolds, Trans. A.M.S.181 (1973), 273-292. Zbl0276.35071
  37. [37] J.J. Kohn -Boundary behavior of ∂ on weakly pseudoconvex manifolds of dimension two, J. of Diff. Geom.6 (1972), 523-542. Zbl0256.35060
  38. [38] J.J. Kohn -Subellipticity of the ∂-Neumann problem on pseudoconvex domains, Acta Math.142 (1979), 79-122. Zbl0395.35069
  39. [39] J.J. Kohn -Pseudodifferential operators and applications, Proc. Symp. Pure Math.43, 207-219. Zbl0571.58027MR812292
  40. [40] J.J. Kohn and L. Nirenberg -Non coercive boundary value problems, Comm. Pure Appl. Math.18 (1965), 443-492. Zbl0125.33302MR181815
  41. [41] J.J. Kohn and L. Nirenberg -A pseudoconvex domain not admitting a holomorphic support function, Math. Ann.201 (1973), 265-268. Zbl0248.32013MR330513
  42. [42] N. Lerner -Non solvability in L2 for a first order operator satisfying condition (ψ), Ann. of Math.139 (1994), 363-393. Zbl0818.35152
  43. [43] H.M. Maire -Hypoelliptic overdetermined systems of partial differential equations, Comm. in P.D.E.5 (4) (1980), 331-380. Zbl0436.35024MR567778
  44. [44] C.B. Morrey -The analytic embedding of abstract real analytic manifolds, Ann. of Math.68 (1958), 159-201. Zbl0090.38401MR99060
  45. [45] L. Nirenberg and F. Trèves -On local solvability for linear partial differential equations I, Comm. Pure Appl. Math.23 (1970), 1-38. Zbl0191.39103MR264470
  46. [46] J. Nourrigat - Reduction microlocale des systèmes d'opérateurs pseudodifférentiels, Ann. Inst. Fourier, Tome XXXVI, Fasc. 3 (1986). Zbl0599.35140
  47. [47] L. Rothschild and E. Stein - Hypoelliptic differential operators and nilpotent groups, Acta Math.137 (1977), 248-315. Zbl0346.35030MR436223
  48. [48] N. Sibony - Une classe de domaines pseudoconvexes, Duke Math. J.55 (1987), 299-319. Zbl0622.32016MR894582
  49. [49] H. Skoda - Application des techniques L2 à la théorie des idéaux de fonctions holomorphes avec poids, Ann. Sc. Ec. Norm. Sup. IV, Série 5 (1972), 545-580. Zbl0254.32017MR333246
  50. [50] D.C. Spencer - Overdetermined systems of linear partial differential equations, Bull. AMS75 (1969), 179-239. Zbl0185.33801MR242200
  51. [51] W.J. Sweeney - A condition for subellipticity in Spencer's Neumann problem, J. of Diff. Geom.21 (1976), 316-362. Zbl0335.35083MR413194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.