Trace class pseudodifferential calculus with operator valued symbols and unusual index formulas

Grigori Rozenblum[1]

  • [1] Dept of Mathematics, Chalmers University of Technology, 412 96 Göteborg, Sweden

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-14

Abstract

top
For several classes of pseudodifferential operators with operator-valued symbol analytic index formulas are found. The common feature is that usual index formulas are not valid for these operators. Applications are given to pseudodifferential operators on singular manifolds.

How to cite

top

Rozenblum, Grigori. "Trace class pseudodifferential calculus with operator valued symbols and unusual index formulas." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-14. <http://eudml.org/doc/11023>.

@article{Rozenblum2000-2001,
abstract = {For several classes of pseudodifferential operators with operator-valued symbol analytic index formulas are found. The common feature is that usual index formulas are not valid for these operators. Applications are given to pseudodifferential operators on singular manifolds.},
affiliation = {Dept of Mathematics, Chalmers University of Technology, 412 96 Göteborg, Sweden},
author = {Rozenblum, Grigori},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Trace class pseudodifferential calculus with operator valued symbols and unusual index formulas},
url = {http://eudml.org/doc/11023},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Rozenblum, Grigori
TI - Trace class pseudodifferential calculus with operator valued symbols and unusual index formulas
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 14
AB - For several classes of pseudodifferential operators with operator-valued symbol analytic index formulas are found. The common feature is that usual index formulas are not valid for these operators. Applications are given to pseudodifferential operators on singular manifolds.
LA - eng
UR - http://eudml.org/doc/11023
ER -

References

top
  1. B. Blackadar, K-theory for Operator Algebras, Springer-Verlag, NY,1986. Zbl0597.46072MR859867
  2. A. Connes, Noncommutative Geometry, Academic Press, NY, 1994. Zbl0818.46076MR1303779
  3. C.Dorschfeldt, B.-W. Schulze, Pseudo-differential operators with operator-valued symbols in the Mellin-edge-approach Ann. Global Anal. Geom., 12 (1994), 135–171. Zbl0827.35144MR1277665
  4. B. Fedosov, Analytic formulas for the index of elliptic operators, Trans. Moscow Math. Soc., 30 (1974), 159–240. Zbl0349.58006MR420731
  5. B. Fedosov, Analytic formulas for the index of an elliptic boundary value problem, Math. USSR Sbornik, 22 (1974), 61-90; 24 (1974), 511-535; 30 (1976), 341-359. Zbl0323.58016MR341537
  6. B. Fedosov, B.-W. Schulze, On the index of elliptic operators on a cone, Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras, 348–372, Akademie Verlag, Berlin, 1996. Zbl0865.35152MR1409837
  7. B.Fedosov, B.-W. Schulze, N. Tarkhanov, On the index of elliptic operators on a wedge, J. Funct. Anal., 157 (1998), 164–209. Zbl0961.58010MR1637925
  8. R. Melrose, P. Piazza, Analytic K -theory for manifolds with corners, Advances Math., 92 (1992), 1–27. Zbl0761.55002MR1153932
  9. B. Plamenevsky, Algebras of pseudodifferential operators, Mathematics and its Applications (Soviet Series), 43, Kluwer Academic Publishers Group, Dordrecht, 1989. Zbl0679.47027MR1026642
  10. B. Plamenevsky, G. Rozenblum, On the index of pseudodifferential operators with isolated singularities in the symbols. (Russian) Algebra i Analiz, 2 (1990), 5, 165–188. Translation in: Leningrad Math. J., 2, (1991), 1085–1110. Zbl0746.35061MR1086450
  11. B. Plamenevsky, G. Rozenblum, Pseudodifferential operators with discontinuous symbols: K -theory and index formulas. (Russian), Funktsional. Anal. i Prilozhen., 26, (1992), 4, 45–56. Translation in: Functional Anal. Appl., 26 (1993), 266–275. Zbl0879.58073MR1209943
  12. G. Rozenblum, Index formulae for pseudodifferential operators with discontinuous symbols, Ann. Global Anal. Geom., 15, (1997), 71–100. Zbl0894.58071MR1443273
  13. E. Schrohe, J. Seiler, An analytic index formula for pseudodifferential operators on wedges, Preprint, Max-Planck-Institut für Mathematik, 96/172, 1996. 
  14. B.-W. Schulze, Pseudodifferential operators on manifolds with singularities, 1991, North Holland, Amsterdam. Zbl0747.58003
  15. B.-W. Schulze, Pseudo-differential Boundary Value Problems, Conical Singularities, and Asymptotics, 1994, Academie-Verlag, Berlin. Zbl0810.35175MR1282496
  16. B.-W. Schulze, Operator algebras with symbol hierarchies on manifolds with singularities, Preprint 99/30, Universitet Potsdam, 1999. Zbl0986.35147MR1827174
  17. B.-W. Schulze, B. Sternin, V. Shatalov, Differential Equations on Singular Manifolds: Semiclassical Theory and Operator Algebra, 1999, Wiley, Weinheim. Zbl0946.58021MR1673461
  18. B.-W. Schulze, B. Sternin, V. Shatalov,On the index of differential operators on manifolds with conical singularities, Ann. Global Anal. Geom., 16 (1998), 141–172. Zbl0914.58030MR1622293
  19. V. Senichkin, Pseudodifferential operators on manifolds with edges, J. Math. Sci., 73 (1995), 711–747. Zbl0844.58074MR1331194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.