Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés
Robert Hardt; Tristan Rivière[1]
- [1] Centre de Mathématiques, Ecole Polytechnique, F- 91128 Palaiseau
Séminaire Équations aux dérivées partielles (2000-2001)
- Volume: 2000-2001, page 1-14
Access Full Article
topHow to cite
topHardt, Robert, and Rivière, Tristan. "Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-14. <http://eudml.org/doc/11026>.
@article{Hardt2000-2001,
affiliation = {Centre de Mathématiques, Ecole Polytechnique, F- 91128 Palaiseau},
author = {Hardt, Robert, Rivière, Tristan},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés},
url = {http://eudml.org/doc/11026},
volume = {2000-2001},
year = {2000-2001},
}
TY - JOUR
AU - Hardt, Robert
AU - Rivière, Tristan
TI - Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 14
LA - fre
UR - http://eudml.org/doc/11026
ER -
References
top- L.Ambrosio and B.Kirchheim “Rectifiable sets in Banach and metric Spaces” Math. Anna., 318, (2000), 527-555. Zbl0966.28002
- F. Bethuel, “The approximation problem for Sobolev mappings between manifolds”, Acta Mathematica, 167, (1991) 167-201. Zbl0756.46017
- F. Bethuel, “A characterization of maps in which can be approximated by smooth maps”, Ann. Inst. Henri Poincaré, 7 269–286, (1990). Zbl0708.58004
- F. Bethuel, “Approximations in trace spaces defined between manifolds”, Nonlinear Anal. Theory Methods Appl. 24, No. 1, (1995), 121-130. Zbl0824.58011
- F. Bethuel, H. Brezis, and J. M. Coron, “Relaxed energies for harmonic maps”,in Variational Problems (H. Berestycki, J. M. Coron, I. Ekeland, eds.), Birkhauser, (1990). Zbl0793.58011
- F. Bethuel and X. Zheng, “Density of Smooth Functions between two Manifolds in Sobolev Spaces”, J. Funct. Ana., 80, (1988), 60-75. Zbl0657.46027
- H. Brezis, J.-M Coron and E. Lieb Harmonic maps with defects, Comm. Math. Phys. 107, (1986), 649-705. Zbl0608.58016MR868739
- H. Federer, Geometric measure Theory, Springer (1996). Zbl0874.49001
- M. Giaquinta, G. Modica and J. Soucek Cartesian Currents in the Calculus of Variations I and II, Springer (1998). Zbl0914.49001
- M.Gromov “Metric structures for Riemannian and non-Riemannian spaces”, Progress in Mathematics, 152, Birkhaüser Boston, MA, 1999. Zbl0953.53002
- F.Hang and F.H.Lin “Topology of Sobolev mappings” prépublication (2000). Zbl1049.46018
- R.Hardt and T.Rivière “Connecting topological Hopf singularities” en préparation. Zbl1150.58004
- J.Milnor and J.Stasheff “Characteristic Classes” Annals of Mathematics Studies, no 76, Princeton University Press, (1974). Zbl0298.57008
- S.P. Novikov “Analytical theory of homotopy groups” Lecture Notes in Math., 1346, Springer (1988), 99-112. Zbl0649.55003
- M.R.Pakzad and T.Rivière “Weak density of smooth maps for the Dirichlet energy between Manifolds” prépublication (2000). Zbl1028.58008
- T.Rivière “Minimizing Fibrations and -Harmonic maps in Homotopy Classes from into ” Comm. Anal. Geom., 6, (1998), 427-483. Zbl0914.58010
- T.Rivière “On Dense subsets of ”, Glob. Anal. and Geom. (2000). Zbl0960.35022
- R. Schoen and K. Uhlenbeck Boundary regularity and the Dirichlet problem for harmonic maps J. Diff. Geom., 18 (1983), 253-268. Zbl0547.58020MR710054
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.