Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés

Robert Hardt; Tristan Rivière[1]

  • [1] Centre de Mathématiques, Ecole Polytechnique, F- 91128 Palaiseau

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-14

How to cite

top

Hardt, Robert, and Rivière, Tristan. "Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-14. <http://eudml.org/doc/11026>.

@article{Hardt2000-2001,
affiliation = {Centre de Mathématiques, Ecole Polytechnique, F- 91128 Palaiseau},
author = {Hardt, Robert, Rivière, Tristan},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés},
url = {http://eudml.org/doc/11026},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Hardt, Robert
AU - Rivière, Tristan
TI - Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 14
LA - fre
UR - http://eudml.org/doc/11026
ER -

References

top
  1. L.Ambrosio and B.Kirchheim “Rectifiable sets in Banach and metric Spaces” Math. Anna., 318, (2000), 527-555. Zbl0966.28002
  2. F. Bethuel, “The approximation problem for Sobolev mappings between manifolds”, Acta Mathematica, 167, (1991) 167-201. Zbl0756.46017
  3. F. Bethuel, “A characterization of maps in H 1 ( B 3 , S 2 ) which can be approximated by smooth maps”, Ann. Inst. Henri Poincaré, 7 269–286, (1990). Zbl0708.58004
  4. F. Bethuel, “Approximations in trace spaces defined between manifolds”, Nonlinear Anal. Theory Methods Appl. 24, No. 1, (1995), 121-130. Zbl0824.58011
  5. F. Bethuel, H. Brezis, and J. M. Coron, “Relaxed energies for harmonic maps”,in Variational Problems (H. Berestycki, J. M. Coron, I. Ekeland, eds.), Birkhauser, (1990). Zbl0793.58011
  6. F. Bethuel and X. Zheng, “Density of Smooth Functions between two Manifolds in Sobolev Spaces”, J. Funct. Ana., 80, (1988), 60-75. Zbl0657.46027
  7. H. Brezis, J.-M Coron and E. Lieb Harmonic maps with defects, Comm. Math. Phys. 107, (1986), 649-705. Zbl0608.58016MR868739
  8. H. Federer, Geometric measure Theory, Springer (1996). Zbl0874.49001
  9. M. Giaquinta, G. Modica and J. Soucek Cartesian Currents in the Calculus of Variations I and II, Springer (1998). Zbl0914.49001
  10. M.Gromov “Metric structures for Riemannian and non-Riemannian spaces”, Progress in Mathematics, 152, Birkhaüser Boston, MA, 1999. Zbl0953.53002
  11. F.Hang and F.H.Lin “Topology of Sobolev mappings” prépublication (2000). Zbl1049.46018
  12. R.Hardt and T.Rivière “Connecting topological Hopf singularities” en préparation. Zbl1150.58004
  13. J.Milnor and J.Stasheff “Characteristic Classes” Annals of Mathematics Studies, no 76, Princeton University Press, (1974). Zbl0298.57008
  14. S.P. Novikov “Analytical theory of homotopy groups” Lecture Notes in Math., 1346, Springer (1988), 99-112. Zbl0649.55003
  15. M.R.Pakzad and T.Rivière “Weak density of smooth maps for the Dirichlet energy between Manifolds” prépublication (2000). Zbl1028.58008
  16. T.Rivière “Minimizing Fibrations and p -Harmonic maps in Homotopy Classes from S 3 into S 2 ” Comm. Anal. Geom., 6, (1998), 427-483. Zbl0914.58010
  17. T.Rivière “On Dense subsets of H 1 2 ( S 2 , S 1 ) ”, Glob. Anal. and Geom. (2000). Zbl0960.35022
  18. R. Schoen and K. Uhlenbeck Boundary regularity and the Dirichlet problem for harmonic maps J. Diff. Geom., 18 (1983), 253-268. Zbl0547.58020MR710054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.