# A characterization of maps in ${H}^{1}({B}^{3},{S}^{2})$ which can be approximated by smooth maps

Annales de l'I.H.P. Analyse non linéaire (1990)

- Volume: 7, Issue: 4, page 269-286
- ISSN: 0294-1449

## Access Full Article

top## How to cite

topBethuel, F.. "A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 269-286. <http://eudml.org/doc/78224>.

@article{Bethuel1990,

author = {Bethuel, F.},

journal = {Annales de l'I.H.P. Analyse non linéaire},

keywords = {density of smooth maps; Sobolev space},

language = {eng},

number = {4},

pages = {269-286},

publisher = {Gauthier-Villars},

title = {A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps},

url = {http://eudml.org/doc/78224},

volume = {7},

year = {1990},

}

TY - JOUR

AU - Bethuel, F.

TI - A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps

JO - Annales de l'I.H.P. Analyse non linéaire

PY - 1990

PB - Gauthier-Villars

VL - 7

IS - 4

SP - 269

EP - 286

LA - eng

KW - density of smooth maps; Sobolev space

UR - http://eudml.org/doc/78224

ER -

## References

top- [B] H. Brezis, private communication.
- [BCL] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects.Comm. Math. Phys., t. 107, 1986, p. 649-705. Zbl0608.58016MR868739
- [Bel] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, to appear. Zbl0756.46017MR1120602
- [BZ] F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces. J. Func. Anal., t. 80, 1988, p. 60-75. Zbl0657.46027MR960223
- [CG] J.M. Coron and R. Gulliver, Minimizing p-harmonic maps into spheres, preprint. Zbl0677.58021MR1018054
- [H] F. Helein, Approximations of Sobolev maps between an open set and an euclidean sphere, boundary data, and singularities, preprint. Zbl0659.35002MR1010196
- [SU] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. J. Diff. Geom., t. 17, 1982, p. 307-335. Zbl0521.58021MR664498
- [W] B. White, Infima of energy functionals in homotopy classes. J. Diff. Geom, t. 23, 1986, p. 127-142. Zbl0588.58017MR845702

## Citations in EuDML Documents

top- Robert Hardt, Tristan Rivière, Ensembles singuliers topologiques dans les espaces fonctionnels entre variétés
- Rejeb Hadiji, Feng Zhou, A problem of minimization with relaxed energy
- Vincent Millot, The relaxed energy for ${S}^{2}$-valued maps and measurable weights
- Fang Hua Lin, Rectifiability of defect measures, fundamental groups and density of Sobolev mappings
- Thiemo Kessel, Tristan Rivière, Singular Bundles with Bounded ${L}^{2}$-Curvatures
- Robert Hardt, Tristan Rivière, Connecting topological Hopf singularities
- Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen, Density of smooth maps for fractional Sobolev spaces ${W}^{s,p}$ into $\ell $ simply connected manifolds when $s\ge 1$
- Jean Bourgain, Haim Brezis, Petru Mironescu, H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation
- Guido De Philippis, Weak notions of jacobian determinant and relaxation
- Guido De Philippis, Weak notions of Jacobian determinant and relaxation

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.