Recent advances in the theory of holonomy

Robert Bryant

Séminaire Bourbaki (1998-1999)

  • Volume: 41, page 351-374
  • ISSN: 0303-1179

How to cite


Bryant, Robert. "Recent advances in the theory of holonomy." Séminaire Bourbaki 41 (1998-1999): 351-374. <>.

author = {Bryant, Robert},
journal = {Séminaire Bourbaki},
keywords = {Riemannian holonomy; exterior differential systems; torsion-free non-metric connections; holonomy group; -structures; pseudo-Riemannian irreducible holonomies in ; exotic conformal holonomies; `classical' non-metric irreducible holonomi},
language = {eng},
pages = {351-374},
publisher = {Société Mathématique de France},
title = {Recent advances in the theory of holonomy},
url = {},
volume = {41},
year = {1998-1999},

AU - Bryant, Robert
TI - Recent advances in the theory of holonomy
JO - Séminaire Bourbaki
PY - 1998-1999
PB - Société Mathématique de France
VL - 41
SP - 351
EP - 374
LA - eng
KW - Riemannian holonomy; exterior differential systems; torsion-free non-metric connections; holonomy group; -structures; pseudo-Riemannian irreducible holonomies in ; exotic conformal holonomies; `classical' non-metric irreducible holonomi
UR -
ER -


  1. [Al1] D. Alekseevskii - Riemannian spaces with unusual holonomy groups, Funct. Anal. Appl.2 (1968), 97-105. Zbl0175.18902MR231313
  2. [Al2] D. Alekseevskii - Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR-Izv9 (1975), 297-339. Zbl0324.53038
  3. [AS] A. Ambrose and I. Singer - A theorem on holonomy, Trans. Amer. Math. Soc.75 (1953), 428-443. Zbl0052.18002MR63739
  4. [BB] L. Bérard-Bergery - On the holonomy of Lorentzian manifolds, Proc. Symp. Pure Math.54 (1993), 27-40. Zbl0807.53014MR1216527
  5. [BI] L. Bérard-Bergery and A. Ikemakhen - Sur l'holonomie des variétés pseudo-riemanniennes de signature (n, n), Bull. Soc. Math. France125 (1997), 93-114. Zbl0916.53033MR1459299
  6. [Ber1] M. Berger, Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France83 (1955), 279-330. Zbl0068.36002MR79806
  7. [Ber2] M. Berger - Les espaces symétriques non compacts, Ann. Sci. École Norm. Sup.74 (1957), 85-177. Zbl0093.35602MR104763
  8. [Bes] A. Besse - Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 10, Springer-Verlag, Berlin, 1987. Zbl0613.53001MR867684
  9. [BL] A. Borel and A. Lichnerowicz - Groupes d'holonomie des variétés riemanniennes, C.R. Acad. Sci. Paris234 (1952), 1835-1837. Zbl0046.39801MR48133
  10. [BG] R. Brown and A. Gray - Riemannian manifolds with holonomy group Spin(9), in Differential Geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, 41-59. Zbl0245.53020MR328817
  11. [Br1] R. Bryant - Metrics with exceptional holonomy, Ann. Math.126 (1987), 525- 576. Zbl0637.53042MR916718
  12. [Br2] R. Bryant - Two exotic holonomies in dimension four, path geometries, and twistor theory, Amer. Math. Soc. Proc. Symp. Pure Math.53 (1991), 33-88. Zbl0758.53017MR1141197
  13. [Br3] R. Bryant - Classical, exceptional, and exotic holonomies: a status report, in Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, 93-166. Zbl0882.53014MR1427757
  14. [BCG] R. Bryant, et al - Exterior Differential Systems, MSRI Series 18, Springer-Verlag, 1991. Zbl0726.58002MR1083148
  15. [BS] R. Bryant and S. Salamon - On the construction of some complete metrics with exceptional holonomy, Duke Math. J.58 (1989), 829-850. Zbl0681.53021MR1016448
  16. [Ca1] É. Cartan - La Géometrie des Espaces de Riemann, Memorial des SciencesMathématiques, Fasc. IX (1925). (Especially, Chapitre VII, Section II.) Zbl51.0566.01JFM51.0566.01
  17. [Ca2] É. Cartan - Les groupes d'holonomie des espaces généralisés, Acta. Math.48 (1926), 1-42. Zbl52.0723.01JFM52.0723.01
  18. [CMS] Q.-S. Chi, S. Merkulov, and L. Schwachhöfer - On the existence of infinite series of exotic holonomies. Inventiones Math.126 (1996), 391-411. Zbl0866.53013MR1411138
  19. [ChS] Q.-S. Chi and L. Schwachhöfer - Exotic holonomy on moduli spaces of rational curves, Differential Geom. App.8 (1998), 105-134. Zbl0991.53030MR1626493
  20. [Gr] M. Gromov - Carnot-Carathéodory spaces seen from within, in Sub-Riemannian geometry, Progr. Math.144, Birkhäuser, Basel, 1996, 79-323. Zbl0864.53025MR1421823
  21. [Jol] D. Joyce - Compact Riemannian 7-manifolds with holonomy G2: I & II, J. Differential Geom.43 (1996), 291-328, 329-375. Zbl0861.53023MR1424428
  22. [Jo2] D. Joyce - Compact 8-manifolds with holonomy Spin(7), Inventiones Math.123 (1996), 507-552. Zbl0858.53037MR1383960
  23. [Jo3] D. Joyce - Compact manifolds with special holonomy, Oxford University Press, Oxford, 2000 (projected). Zbl1027.53052MR1787733
  24. [KNa] S. Kobayashi and K. Nagano - On filtered Lie algebras and geometric structures, II, J. Math. Mech.14 (1965), 513-521. Zbl0163.28103MR185042
  25. [KNo] S. Kobayashi and K. Nomizu - Foundations of Differential Geometry, Vols. 1 & 2, Wiley-Interscience, New York, 1963. Zbl0175.48504MR152974
  26. [LM] H.B. Lawson, JR. and M.L. Michelsohn - Spin geometry, PrincetonMath. Series38, Princeton Univ. Press, Princeton, NJ, 1989. Zbl0688.57001MR1031992
  27. [Me1] S. Merkulov - Moduli spaces of compact complex submanifolds of complex fibered manifolds, Math. Proc. Camb. Phil. Soc.118 (1995), 71-91. Zbl0845.32023MR1329460
  28. [Me2] S. Merkulov - Geometry of Kodaira moduli spaces, Proc. Amer. Math. Soc.124 (1996), 1499-1506. Zbl0852.32010MR1327027
  29. [Me3] S. Merkulov - Existence and geometry of Legendre moduli spaces, Math. Z.226 (1997), 211-265. Zbl0904.53047MR1477628
  30. [MS1] S. Merkulov and L. Schwachhöfer - Classification of irreducible holonomies of torsion-free affine connections, Ann. Math. (to appear). Zbl0992.53038MR1715321
  31. [MS2] S. Merkulov and L. Schwachhöfer - Twistor solution of the holonomy problem, 395-402, The Geometric Universe, Science, Geometry and the work of Roger Penrose, S.A. Hugget (ed.), Oxford Univ. Press, 1998. Zbl0907.53018MR1634529
  32. [PoS] Y.S. Poon and S. Salamon - Quaternionic Kähler 8-manifolds with positive scalar curvature, J. Differential Geom.33 (1991), 363-378. Zbl0733.53035MR1094461
  33. [Sa] S. Salamon - Riemannian geometry and holonomy groups, Pitman Research Notes in Math., no. 201, Longman Scientific & Technical, Essex, 1989. Zbl0685.53001MR1004008
  34. [Scho] J. Schouten - On the number of degrees of freedom of the geodetically moving systems, Proc. Kon. Acad. Wet. Amsterdam21 (1918), 607-613. 
  35. [Schw] L. Schwachhöfer - On the classification of holonomy representations, Habilitationsschrift, Universität Leipzig, 1998. 
  36. [Wi] B. Wilking - On compact Riemannian manifolds with noncompact holonomy groups, 1999 preprint. URL: MR1758296

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.