Différentielles non commutatives et théorie de Galois différentielle ou aux différences

Yves André

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 5, page 685-739
  • ISSN: 0012-9593

How to cite

top

André, Yves. "Différentielles non commutatives et théorie de Galois différentielle ou aux différences." Annales scientifiques de l'École Normale Supérieure 34.5 (2001): 685-739. <http://eudml.org/doc/82555>.

@article{André2001,
author = {André, Yves},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {differential Galois group; holonomy group; Galois correspondence theorem},
language = {fre},
number = {5},
pages = {685-739},
publisher = {Elsevier},
title = {Différentielles non commutatives et théorie de Galois différentielle ou aux différences},
url = {http://eudml.org/doc/82555},
volume = {34},
year = {2001},
}

TY - JOUR
AU - André, Yves
TI - Différentielles non commutatives et théorie de Galois différentielle ou aux différences
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 5
SP - 685
EP - 739
LA - fre
KW - differential Galois group; holonomy group; Galois correspondence theorem
UR - http://eudml.org/doc/82555
ER -

References

top
  1. [1] André Y., Quatre descriptions des groupes de Galois différentiels, Sém. d'algèbre de Paris 86/87, Lect. Notes in Math., 1296, Springer-Verlag, 1987, pp. 28–41. Zbl0651.12015
  2. [2] André Y., Notes sur la théorie de Galois différentielle, Prépubl. IHES/M/89/49, 1989. 
  3. [3] André Y., Pour une théorie inconditionnelle des motifs, Publ. Math. Inst. Hautes Études Sci.83 (1996) 5-49. Zbl0874.14010MR1423019
  4. [4] Aomoto K., q-analogue of de Rham cohomology associated with Jackson integrals, Proc. Japan Acad.66 (1990) 161-164. Zbl0718.33011MR1078398
  5. [5] Berthelot P., Ogus A., Notes on Crystalline Cohomology, Math. Notes, 21, Princeton Univ. Press, 1978. Zbl0383.14010MR491705
  6. [6] Bertrand D., Groupes algébriques et équations différentielles linéaires, Sém. Bourbaki, exp. 750, février 1992, Astérisque206 (1992) 183-204. Zbl0813.12004MR1206068
  7. [7] Beukers F., Differential Galois theory, in: Waldschmidt M., Moussa P., Luck J.M., Itzykson C. (Eds.), From Number Theory to Physics, Springer-Verlag, 1992. Zbl0813.12001MR1221099
  8. [8] Bialynicki-Birula, On Galois theory of fields with operators, Amer. J. Math.84 (1962) 89-109. Zbl0113.03203MR141663
  9. [9] Bourbaki N., Algèbre, Masson, 1981, chapitres III, IV et X. MR643362
  10. [10] Bourbaki N., Algèbre commutative, Masson, 1985, chapitre I. 
  11. [11] Bruguières A., Théorie tannakienne non commutative, Comm. Algebra22 (14) (1994) 5817-5860. Zbl0808.18005MR1298753
  12. [12] Bryant R., Recent advances in the theory of holonomy, Sém. Bourbaki, exp. 861, juin 1999, Astérisque266 (2000) 351-374. Zbl1014.53029MR1772679
  13. [13] Cohn P., Free Rings and their Relations, London Math. Soc. Monogr., 2, Academic Press, 1971. Zbl0232.16003MR371938
  14. [14] Cohn P., Skew Field Constructions, Cambridge Univ. Press, 1977. Zbl0355.16009MR463237
  15. [15] Connes A., Géométrie non commutative, Interéditions, 1990. Zbl0745.46067MR1079062
  16. [16] Connes A., Non-Commutative Geometry, Academic Press, 1994. 
  17. [17] Demazure M., Gabriel P., Groupes algébriques 1, North-Holland, 1970. Zbl0203.23401
  18. [18] Deligne P., Le groupe fondamental de la droite projective moins trois points, in: Galois Groups over Q ¯ , M.S.R.I. Publ., 16, 1989, pp. 79-297. Zbl0742.14022MR1012168
  19. [19] Deligne P., Catégories tannakiennes, Grothendieck Festschrift, 2, Birkhäuser P.M. 87, 1990, pp. 111–198. Zbl0727.14010
  20. [20] Deligne P., Milne J., Tannakian categories, Lect. Notes in Math., 900, Springer-Verlag, 1982, pp. 101–228. Zbl0477.14004
  21. [21] Dubois-Violette M., Masson T., On the first order operators in bimodules, Lett. Math. Phys.37 (1996) 464-474. Zbl0868.58009MR1401049
  22. [22] Dubois-Violette M., Some aspects of noncommutative differential geometry, Contemporary Math., 203, 1997, pp. 145–157. Zbl0876.58001
  23. [23] Duval A., Lemmes de Hensel et factorisation formelle pour les opérateurs aux différences, Funkcial. Ekvac.26 (1983) 349-368. Zbl0543.12018MR748022
  24. [24] Ekedahl T., Foliations and inseparable morphisms, Proc. Symp. Pure Math.46 (1987) 139-149. Zbl0659.14018MR927978
  25. [25] Fahim A., Extensions galoisiennes d'algèbres différentielles, C. R. Acad. Sci. Paris, Série A314 (1992) 1-4. Zbl0748.12004MR1149627
  26. [26] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge Univ. Press, 1990. Zbl0695.33001MR1052153
  27. [27] Hellegouarch Y., Galois calculus and Carlitz exponentials, in: Goss D., Hayes D., Rosen M. (Eds.), The Arithmetic of Function Fields, de Gruyter, 1992, pp. 33-50. Zbl0794.11025MR1196510
  28. [28] Karoubi M., Homologie cyclique et K-théorie, Astérisque, 149, Soc. Math. France, 1987. Zbl0648.18008MR913964
  29. [29] Karoubi M., Formes différentielles non commutatives et cohomologie à coefficients arbitraires, Trans. Amer. Math. Soc.347 (11) (1995) 4277-4299. Zbl0852.55009MR1316853
  30. [30] Katz N., Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin, Publ. Math. Inst. Hautes Études Sci.39 (1970) 175-232. Zbl0221.14007MR291177
  31. [31] Katz N., Exponential Sums and Differential Equations, Annals of Math. Studies, 124, Princeton, 1990. Zbl0731.14008MR1081536
  32. [32] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Interscience I, 1963. Zbl0119.37502MR152974
  33. [33] Kolchin E., Algebraic matrix groups and the Picard–Vessiot theory of linear ordinary differential equations, Ann. of Math.49 (1948) 1-42. Zbl0037.18701
  34. [34] Laksov D., Thorup A., These are the differentials of order n, Trans. Amer. Math. Soc.351 (4) (1999) 1293-1353. Zbl0920.13023MR1458328
  35. [35] Levelt A., Differential Galois theory and tensor products, Indag. Math. N.S.1 (1990) 439-450. Zbl0731.12003MR1106091
  36. [36] Lichnerowicz A., Théorie globale des connexions et des groupes d'holonomie, Cremona, 1955. Zbl0116.39101
  37. [37] Mathieu O., Classification des algèbres de Lie simples, Sém. Bourbaki, exp. 858, mars 1999, Astérisque266 (2000) 245-286. Zbl0990.17008MR1772676
  38. [38] Mourad J., Linear connections in noncommutative geometry, Class. Quant. Grav.12 (1995) 965-974. Zbl0822.58006MR1330296
  39. [39] Nuss P., Noncommutative descent and non-abelian cohomology, 12 (1997) 23-74. Zbl0884.18015MR1466623
  40. [40] Praagman C., The formal classification of linear difference operators, Proc. Kon. Ned. Ac. Wet. Ser. A86 (1983) 249-261. Zbl0519.39003MR705431
  41. [41] Saavedra Rivano N., Catégories tannakiennes, Lect. Notes in Math., 256, Springer-Verlag, 1972. Zbl0241.14008MR338002
  42. [42] Sauloy J., Matrice de connexion d'un système aux q-différences confluant vers un système différentiel de matrices de monodromie, C. R. Acad. Sci. Paris, Série I328 (1999) 155-160. Zbl0919.39004MR1669074
  43. [43] Serre J.-P., Gèbres, L'Ens. Math.39 (1993) 33-85. Zbl0810.16039MR1225256
  44. [44] Suzuki, General formulation of quantum analysis, Rev. Math. Physics11 (2) (1999) 243-265. Zbl0930.46059MR1681198
  45. [45] Tannaka T., Über der Dualitätssatz der nichtkommutative topologischen Gruppen, Tôhoku Math. J.45 (1939) 1-12. JFM64.0362.01
  46. [46] Tarasov V., Varchenko A., Geometry of q-Hypergeometric Functions, Quantum Affine Algebras and Elliptic Quantum Groups, Astérisque, 246, Soc. Math. France, 1997. Zbl0938.17012MR1646561
  47. [47] van der Put M., Differential equations in characteristic p, Compositio Math.97 (1995) 227-251. Zbl0861.12004MR1355126
  48. [48] van der Put M., Singer M., Galois Theory of Difference Equations, Lect. Notes Math., 1666, Springer-Verlag, 1997. Zbl0930.12006MR1480919
  49. [49] Warner F., Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Math., 94, Springer-Verlag, 1971. Zbl0516.58001MR295244

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.