Densité maximale des empilements de sphères en dimension 3

Joseph Oesterlé

Séminaire Bourbaki (1998-1999)

  • Volume: 41, page 405-413
  • ISSN: 0303-1179

How to cite

top

Oesterlé, Joseph. "Densité maximale des empilements de sphères en dimension 3." Séminaire Bourbaki 41 (1998-1999): 405-413. <http://eudml.org/doc/110266>.

@article{Oesterlé1998-1999,
author = {Oesterlé, Joseph},
journal = {Séminaire Bourbaki},
keywords = {maximal density; 18th Hilbert problem},
language = {fre},
pages = {405-413},
publisher = {Société Mathématique de France},
title = {Densité maximale des empilements de sphères en dimension 3},
url = {http://eudml.org/doc/110266},
volume = {41},
year = {1998-1999},
}

TY - JOUR
AU - Oesterlé, Joseph
TI - Densité maximale des empilements de sphères en dimension 3
JO - Séminaire Bourbaki
PY - 1998-1999
PB - Société Mathématique de France
VL - 41
SP - 405
EP - 413
LA - fre
KW - maximal density; 18th Hilbert problem
UR - http://eudml.org/doc/110266
ER -

References

top
  1. [1] J.H. Conway, N.J.A. Sloane - Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften290, Springer Verlag, 1988. Zbl0634.52002MR920369
  2. [2] L. Fejes Tôth - Über die dichteste Kugellagerung, Math. Z.48 (1943), 676- 684. Zbl0027.34102MR9129
  3. [3] L. Fejes Tôth - Lagerungen in der Ebene, auf der Kugel und im Raum, Springer, Berlin, 1953. Zbl0052.18401MR57566
  4. [4] S.P. Ferguson - Sphere packings V, thèse, Université du Michigan, 1997. 
  5. [5] S.P. Ferguson, T.C. Hales - A formulation of the Kepler conjecture, prépublication. 
  6. [6] C.F. Gauss - Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seber, Gôttingische gelehrte Anzeigen, 1831, Juli 9 (= Werke, vol 2, Königlische Gesellschaft der Wissenschaften, Göttingen, 1876, 188-196). 
  7. [7] T.C. Hales - An overview of the Kepler conjecture, prépublication. 
  8. [8] T.C. Hales - Sphere packings I, Disc. Comp. Geom.17 (1997), 1-51. Zbl0883.52012MR1418278
  9. [9] T.C. Hales - Sphere packings II, Disc. Comp. Geom.18 (1997), 135-149. Zbl0883.52013MR1455511
  10. [10] T.C. Hales - Sphere packings III, prépublication. 
  11. [11] T.C. Hales - Sphere packings IV, prépublication. 
  12. [12] T.C. Hales - The Kepler conjecture (Sphere packings VI), prépublication. 
  13. [13] W-Y. Hsiang - On the sphere packing problem and the proof of Kepler's conjecture, Intern. J. Math.93 (1993), 739-831. Zbl0844.52017MR1245351
  14. [14] J. Kepler - Strena seu de nive sexangula, Frankfurt, Tampach, 1611, 24 pages. (Traduction allemande de 
  15. F. Rossmann, Neujahrsgabe, Berlin, 1943 ; traduction anglaise de 
  16. C. Hardie, The six-cornered snowflake, Oxford, 1966 ; traduction française de 
  17. R. Halleux, L'étrenne ou la neige sexangulaire, librairie J. Vrin et éditions du CNRS, Paris, 1975.) 
  18. [15] J. Oesterlé - Empilements de sphères, Séminaire Bourbaki1989-90, exposé n° 727, Astérisque189-190 (1990), 375-397. Zbl0731.52005MR1099882
  19. [16] C.A. Rogers - The packing of equal spheres, Proc. London Math. Soc.8 (1958), 609-620. Zbl0085.03302MR102052
  20. [17] K. Schütte, B.L. Van Der Waerden - Das Problem der dreizehn Kugeln, Proc. London Math. Ann.125 (1953), 325-334. Zbl0050.16701MR53537
  21. [18] A. Thue - Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene, Norske Vid. Selsk. Skr.1 (1910), 1-9. Zbl41.0550.02JFM41.0550.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.