Ensembles quasiminimaux pour le périmètre avec contrainte de volume et rectificabilité uniforme

Séverine Rigot

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-13

How to cite

top

Rigot, Séverine. "Ensembles quasiminimaux pour le périmètre avec contrainte de volume et rectificabilité uniforme." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-13. <http://eudml.org/doc/11028>.

@article{Rigot2000-2001,
author = {Rigot, Séverine},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {perimeter problem; regularity; quasiminima; perimeter functional},
language = {fre},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Ensembles quasiminimaux pour le périmètre avec contrainte de volume et rectificabilité uniforme},
url = {http://eudml.org/doc/11028},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Rigot, Séverine
TI - Ensembles quasiminimaux pour le périmètre avec contrainte de volume et rectificabilité uniforme
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 13
LA - fre
KW - perimeter problem; regularity; quasiminima; perimeter functional
UR - http://eudml.org/doc/11028
ER -

References

top
  1. F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976) Zbl0327.49043MR420406
  2. L. Ambrosio, E. Paolini, Partial regularity for quasi minimizers of perimeter, Ricerche Mat. 48 (1999), 167-186 Zbl0943.49032MR1765683
  3. G. David, S. Semmes, Analysis of and on uniformly rectifiable sets, 38 (1993), Amer. Math. Soc. Zbl0832.42008MR1251061
  4. G. David, S. Semmes, Quantitative rectifiability and Lipschitz mappings, Trans. Amer. Math. Soc. 337 (1993), 855-889 Zbl0792.49029MR1132876
  5. G. David, S. Semmes, Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Mem. Amer. Math. Soc. 144 (2000) Zbl0966.49024MR1683164
  6. E. De Giorgi, Frontiere orientate di misura minima, (1960-1961) Zbl0296.49031
  7. H. Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767-771 Zbl0194.35803MR260981
  8. E. Giusti, Minimal surfaces and functions of bounded variation, 80 (1984), Birkhäuser Zbl0545.49018MR775682
  9. E. Gonzalez, U. Massari, I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), 25-37 Zbl0486.49024MR684753
  10. F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids : a mean-field theory, Arch. Rational Mech. Anal. 141 (1998), 63-103 Zbl0905.35068MR1613500
  11. S. Rigot, Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme, Mém. Soc. Math. Fr. (N.S.) 82 (2000) Zbl0983.49025MR1807347
  12. S. Rigot, Uniform partial regularity of quasi minimizers for the perimeter, Cal. Var. Partial Differential Equations 10 (2000), 389-406 Zbl0961.49025MR1767720
  13. I. Tamanini, Regularity results for almost minimal oriented hypersurfaces in n , (1984), Quaderni Del Dipartimento Di Matematica Dell’ Universita’ Di Lecce Zbl1191.35007
  14. W. P. Ziemer, Weakly differentiable functions, 120 (1989), Springer-Verlag Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.