La correspondance de McKay

Miles Reid

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 53-72
  • ISSN: 0303-1179

How to cite


Reid, Miles. "La correspondance de McKay." Séminaire Bourbaki 42 (1999-2000): 53-72. <>.

author = {Reid, Miles},
journal = {Séminaire Bourbaki},
keywords = {group action; -theory; derived category; quotient variety; resolution of singularity; motivic integration; McKay correspondence; Hilbert schemes of -orbits; crepant resolution; discrepancy divisor; Klein quotient singularity},
language = {eng},
pages = {53-72},
publisher = {Société Mathématique de France},
title = {La correspondance de McKay},
url = {},
volume = {42},
year = {1999-2000},

AU - Reid, Miles
TI - La correspondance de McKay
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 53
EP - 72
LA - eng
KW - group action; -theory; derived category; quotient variety; resolution of singularity; motivic integration; McKay correspondence; Hilbert schemes of -orbits; crepant resolution; discrepancy divisor; Klein quotient singularity
UR -
ER -


  1. [Ba1] V. Batyrev, Birational Calabi-Yau n-folds have equal Betti numbers, in New trends in algebraic geometry, Klaus Hulek and others (eds.), CUP, 1999, pp. 1-11. Zbl0955.14028MR1714818
  2. [Ba2] V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), 1-32, World Sci. Publishing, River Edge, NJ, 1998. Zbl0963.14015MR1672108
  3. [Ba3] V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc.1 (1999), 5-33. Zbl0943.14004MR1677693
  4. [BD] V. Batyrev and D. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, Topology35 (1996), 901-929. Zbl0864.14022MR1404917
  5. [BO1] A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Max Planck Inst. Bonn preprint MPI-97-36, math.AG/9712029, 20 pp. MR1818984
  6. [BO2] A. Bondal and D. Orlov, Semi-orthogonal decomposition for algebraic varieties, preprint alg-geom/9506012. 
  7. [Br] T. Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc.31 (1999), 25-34. Zbl0937.18012MR1651025
  8. [BrM] T. Bridgeland and A. Maciocia, Fourier-Mukai transforms for K3 fibrations, preprint math/9908022, 18 pp. Zbl1066.14047
  9. [B] J.-L. Brylinski, A correspondence dual to McKay's, preprint alg-geom/9612003. 
  10. [BKR] T. Bridgeland, A. King and M. Reid, Mukai implies McKay, preprint math/9908027, 17 pp. 
  11. [C1] A. Craw, An introduction to motivic integration, preliminary draft available from, 23 pp. MR2103724
  12. [C2] A. Craw, A-Hilb C3 and McKay correspondence, work in progress. 
  13. [CR] A. Craw and M. Reid, How to calculate A-Hilb C3, preprint math/ 9909085, 29 pp. MR2075608
  14. [DHVW] L. Dixon, J. Harvey, C. Vafa and E. Witten, Strings on orbifolds. I, Nuclear Phys.B261 (1985), 678-686. II, same J.274 (1986), 285-314. MR818423
  15. [DHZ] D.I. Dais, M. Henk and G.M. Ziegler, All Abelian quotient c.i. singularities admit crepant resolutions, preprint alg-geom/9704007, 35 pp. 
  16. [DL1] J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math.135 (1999), 201-232. Zbl0928.14004MR1664700
  17. [DL2] J. Denef and F. Loeser, Motivic integration, quotient singularities and the McKay correspondence, preprint math/9903187, 20 pp., to appear in Compositio Math. Zbl1080.14001MR1905024
  18. [GSpV] G. Gonzalez-Sprinberg and J.-L. Verdier, Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup. (4) 16 (1983), 409-449. Zbl0538.14033MR740077
  19. [H] R. Hartshorne, Residues and duality, L.N.M.20Springer, 1966. Zbl0212.26101MR222093
  20. [HH] F. Hirzebruch and T. Höfer, On the Euler number of an orbifold, Math. Ann.286 (1990), 255-260. Zbl0679.14006MR1032933
  21. [IN] Y. Ito and H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, preprint math.AG/9803120, 35 pp., to appear in Topology. Zbl0995.14001MR1783852
  22. [IN1] Y. Ito and I. Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci.72 (1996), 135-138. Zbl0881.14002MR1420598
  23. [IN2] Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, in New trends in algebraic geometry, Hulek and others (eds.), CUP1999, pp. 155-233. Zbl0954.14001MR1714824
  24. [IR] Y. Ito and M. Reid, The McKay correspondence for finite subgroups of SL(3,C), in Higher-dimensional complex varieties (Trento, 1994), 221- 240, de Gruyter, Berlin, 1996. Zbl0894.14024MR1463181
  25. [K] M. Kontsevich, Motivic integration, Legendary lecture at Orsay, Thu 7th Dec 1995. 
  26. [Ka1] D. Kaledin, McKay correspondence for symplectic quotient singularities, preprint math/9907087, 28 pp. MR1892847
  27. [Ka2] D. Kaledin, Dynkin diagrams and crepant resolutions of quotient singularities, preprint math/9903157, 30 pp. 
  28. [Kr] P.B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Diff. Geom.29 (1989), 665-683. Zbl0671.53045MR992334
  29. [GIT] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory (3rd edn.), Springer, 1994. ' Zbl0797.14004MR1304906
  30. [Mu] S. Mukai, Duality between D(X) and D(X) with its application to Picard sheaves, Nagoya Math. J.81 (1981), 153-175. Zbl0417.14036MR607081
  31. [N] I. Nakamura, Hilbert schemes of Abelian group orbits, to appear in J. Alg. Geom. Zbl1104.14003MR1838978
  32. [O] D.O. Orlov, Equivalences of derived categories and K3 surfaces, Algebraic geometry, 7J. Math. Sci. (New York) 84 (1997), 1361-1381, preprint alg-geom/9606006, 28 pp. Zbl0938.14019MR1465519
  33. [YPG] M. Reid, Young person's guide to canonical singularities, in Algebraic Geometry, Bowdoin 1985, ed. S. Bloch, Proc. of Symposia in Pure Math.46, A.M.S. (1987), vol. 1, 345-414. Zbl0634.14003MR927963
  34. [R] M. Reid, McKay correspondence, in Proc. of algebraic geometry symposium (Kinosaki, Nov 1996), T. Katsura (ed.), 14-41, preprint alggeom/9702016, 30 pp. 
  35. [Homework] Homework sheets will be on my website, including examples, exercises, more hints, and errata to this lecture. 
  36. [Roan] S.-S. Roan, Orbifold Euler characteristic, in Mirror symmetry, II, AMS1997, pp. 129-140. Zbl0939.14020MR1416337
  37. [T] B. Totaro, Chern numbers for singular varieties and elliptic homology. Ann. of Math.151 (2000), no. 2, 757-791. Preprint available from Zbl1050.14500MR1765709
  38. [V] C. Vafa, String vacua and orbifoldized LG models, Modern Phys. Lett.A4 (1989), 1169-1185. MR1016963
  39. [Vb] M. Verbitsky, Holomorphic symplectic geometry and orbifold singularities, preprint math. AG/9903175, 17 pp. MR1796694
  40. [Z] E. Zaslow, Topological orbifold models and quantum cohomology rings, Comm. Math. Phys.156 (1993), 301-331. Zbl0795.53074MR1233848

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.