Derived categories and birational geometry
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 283-308
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Abramovich & J.C. Chen – “Computations with moduli of perverse point sheaves”, preprint arXiv : math.AG/0304353.
- [2] —, “Flops, flips and perverse point sheaves on threefold stacks”, preprint arXiv : math.AG/0304354.
- [3] P. Balmer – “Presheaves of triangulated categories and reconstruction of schemes”, Math. Ann.324 (2002), p. 557–580. Zbl1011.18007MR1938458
- [4] A.A. Beilinson – “The derived category of coherent sheaves on ”, Selecta Math. Soviet. 3 (1983/84), p. 233–237, ou (en russe) Funktsional. Anal. i Prilozhen. 12 (1978), p. 68–69. Zbl0545.14012MR863137
- [5] A. Bondal & M.M. Kapranov – “Representable functors, Serre functors, and mutations”, Math. USSR-Izv. 35 (1990), p. 519–541. Zbl0703.14011MR1039961
- [6] A. Bondal & D. Orlov – “Semiorthogonal decompositions for algebraic varieties”, preprint arXiv : alg-geom/9506012.
- [7] —, “Reconstruction of a variety from the derived category and groups of autoequivalences”, Compositio Math.125 (2001), p. 327–344. Zbl0994.18007MR1818984
- [8] —, “Derived categories of coherent sheaves”, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, 2002, p. 47–56. Zbl0996.18007MR1957019
- [9] A. Bondal & M. Van den Bergh – “Generators and representability of functors in commutative and noncommutative geometry”, Moscow Math. J.3 (2003), p. 1–36. Zbl1135.18302MR1996800
- [10] T. Bridgeland – “Fourier-Mukai transforms for elliptic surfaces”, J. reine angew. Math. 498 (1998), p. 115–133. Zbl0905.14020MR1629929
- [11] —, “Equivalences of triangulated categories and Fourier-Mukai transforms”, Bull. London Math. Soc.31 (1999), p. 25–34. Zbl0937.18012MR1651025
- [12] —, “Flops and derived categories”, Invent. Math.147 (2002), p. 613–632. Zbl1085.14017MR1893007
- [13] T. Bridgeland, A. King & M. Reid – “The McKay correspondence as an equivalence of derived categories”, J. Amer. Math. Soc.14 (2001), p. 535–554. Zbl0966.14028MR1824990
- [14] T. Bridgeland & A. Maciocia – “Complex surfaces with equivalent derived categories”, Math. Z.236 (2001), p. 677–697. Zbl1081.14023MR1827500
- [15] —, “Fourier-Mukai transforms for and elliptic fibrations”, J. Algebraic Geom.11 (2002), p. 629–657. Zbl1066.14047MR1910263
- [16] A. Căldăraru – “Derived categories of sheaves : a skimming”, preprint arXiv : math.AG/0501094. MR2182889
- [17] —, “The Mukai pairing, I : the Hochschild structure”, preprint arXiv : math.AG/0308079(v2).
- [18] —, “The Mukai pairing, II : the Hochschild-Kostant-Rosenberg isomorphism”, preprint arXiv : math.AG/0308080(v3). Zbl1098.14011
- [19] J.-C. Chen – “Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities”, J. Differential Geom.61 (2002), p. 227–261. Zbl1090.14003MR1972146
- [20] K. Cho, Y. Miyaoka & N.I. Shepherd-Barron – “Characterizations of projective space and applications to complex symplectic manifolds”, in Higher dimensional birational geometry (Kyoto, 1997), Math. Soc. Japan, 2002, p. 1–88. Zbl1063.14065MR1929792
- [21] J. Chuang & R. Rouquier – “Derived equivalences for symmetric groups and -categorification”, preprint arXiv : math.RT/0407205. Zbl1144.20001MR2373155
- [22] H. Clemens, J. Kollár & S. Mori – Higher-dimensional complex geometry, Astérisque, vol. 166, Société Mathématique de France, Paris, 1988. Zbl0689.14016MR1004926
- [23] P. Gabriel – “Des catégories abéliennes”, Bull. Soc. math. France 90 (1962), p. 323–448. Zbl0201.35602
- [24] A.L. Gorodentsev & S.A. Kuleshov – “Helix theory”, Moscow Math. J. 4 (2004), p. 377–440, 535. Zbl1072.14020MR2108443
- [25] L. Hille & M. Van den Bergh – “Fourier-Mukai transforms”, preprint arXiv : math.AG/0402043(v2). MR2384610
- [26] D. Huybrechts – “Fourier-Mukai transforms in algebraic geometry”, livre en préparation. Zbl1095.14002MR2244106
- [27] M.M. Kapranov – “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math.92 (1988), p. 479–508. Zbl0651.18008MR939472
- [28] M. Kashiwara & P. Schapira – Sheaves on manifolds, Springer-Verlag, 1990. Zbl0709.18001MR1074006
- [29] Y. Kawamata – “Derived Categories of Toric Varieties”, preprint arXiv : math.AG/0503102. Zbl1159.14026MR2280493
- [30] —, “Derived equivalence for stratified Mukai flop on ”, preprint arXiv : math.AG/0503101. MR2282964
- [31] —, “-equivalence and -equivalence”, J. Differential Geom.61 (2002), p. 147–171. MR1949787
- [32] —, “Francia’s flip and derived categories”, in Algebraic geometry, de Gruyter, 2002, p. 197–215. Zbl1092.14023MR1954065
- [33] —, “Equivalences of derived categories of sheaves on smooth stacks”, Amer. J. Math.126 (2004), p. 1057–1083. Zbl1076.14023MR2089082
- [34] A. King – “Tilting bundles on some rational surfaces”, preprint http://www.maths.bath.ac.uk/~masadk/papers/tilt.ps, 1997.
- [35] M. Kontsevich – “Homological algebra of mirror symmetry”, in Proceedings of the International Congress of Mathematicians, Vol. 1 (Zürich, 1994), Birkhäuser, 1995, p. 120–139. Zbl0846.53021MR1403918
- [36] —, “Deformation quantization of Poisson manifolds”, Lett. Math. Phys.66 (2003), p. 157–216. Zbl1058.53065MR2062626
- [37] A. Kuznetsov – “Derived category of Fano threefolds”, preprint arXiv : math.AG/0310008. Zbl1111.14038
- [38] —, “Derived category of a cubic threefold and the variety ”, Trudy Mat. Inst. Steklov.246 (2004), p. 183–207. MR2101293
- [39] E. Looijenga – “Motivic measures”, in Séminaire Bourbaki (1999/2000), Astérisque, vol. 276, Société Mathématique de France, Paris, 2002, Exp. no 874, p. 267–297. Zbl0996.14011MR1886763
- [40] E. Markman – “Brill-Noether duality for moduli spaces of sheaves on surfaces”, J. Algebraic Geom.10 (2001), p. 623–694. Zbl1074.14525MR1838974
- [41] S. Mukai – “Duality between and with its application to Picard sheaves”, Nagoya Math. J.81 (1981), p. 153–175. Zbl0417.14036MR607081
- [42] —, “On the moduli space of bundles on surfaces. I”, in Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res., 1987, p. 341–413. Zbl0674.14023MR893604
- [43] Y. Namikawa – “Mukai flops and derived categories”, J. reine angew. Math. 560 (2003), p. 65–76. Zbl1033.18008MR1992802
- [44] —, “Mukai flops and derived categories. II”, in Algebraic structures and moduli spaces, American Mathematical Society, 2004, p. 149–175. Zbl1086.14011MR2096144
- [45] D. Orlov – “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math.41 (1993), p. 133–141. Zbl0798.14007MR1208153
- [46] —, “Equivalences of derived categories and surfaces”, J. Math. Sci.84 (1997), p. 1361–1381. Zbl0938.14019MR1465519
- [47] —, “Derived categories of coherent sheaves on abelian varieties and equivalences between them”, Izv. Math.66 (2002), p. 569–594. Zbl1031.18007MR1921811
- [48] —, “Derived categories of coherent sheaves and equivalences between them”, Russian Math. Surveys 58 (2003), no. 3, p. 511–591. Zbl1118.14021MR1998775
- [49] A. Polishchuk – Abelian varieties, theta functions and the Fourier transform, Cambridge University Press, 2003. Zbl1018.14016MR1987784
- [50] M. Reid – “La correspondance de McKay”, in Séminaire Bourbaki (1999/2000), Astérisque, vol. 276, Société Mathématique de France, Paris, 2002, Exp. no 867, p. 53–72. Zbl0996.14006MR1886756
- [51] R. Rouquier – “Dimensions of triangulated categories”, preprint arXiv : math.CT/0310134(v3). Zbl1165.18008MR2434186
- [52] —, “Catégories dérivées et géométrie algébrique”, notes d’exposés, http://www.math.jussieu.fr/~rouquier/preprints/luminy.dvi, janvier 2004.
- [53] A. Rudakov – “Rigid and exceptional vector bundles and sheaves on a Fano variety”, in Proceedings of the International Congress of Mathematicians, Vol. 1 (Zürich, 1994), Birkhäuser, 1995, p. 697–705. Zbl0855.14001MR1403970
- [54] R. Swan – “Hochschild cohomology of quasiprojective schemes”, J. Pure Appl. Algebra110 (1996), p. 57–80. Zbl0865.18010MR1390671
- [55] T. Tanisaki – “Hodge modules, equivariant -theory and Hecke algebras”, Publ. RIMS, Kyoto Univ. 23 (1987), p. 841–879. Zbl0655.14004MR934674
- [56] R.W. Thomason – “Les -groupes d’un fibré projectif”, in Algebraic -theory and algebraic topology (Lake Louise, 1991), Kluwer, 1993, p. 243–248. Zbl0910.19002MR1367302
- [57] —, “Les -groupes d’un schéma éclaté et une formule d’intersection excédentaire”, Invent. Math.112 (1993), p. 195–215. Zbl0816.19004MR1207482
- [58] —, “The classification of triangulated subcategories”, Compositio Math.105 (1997), p. 1–27. Zbl0873.18003MR1436741
- [59] B. Toen – “The homotopy category of dg-categories and derived Morita theory”, preprint arXiv : math.AG/0408337(v5). Zbl1118.18010
- [60] H. Uehara – “An example of Fourier-Mukai partners of minimal elliptic surfaces”, Math. Res. Lett.11 (2004), p. 371–375. Zbl1060.14055MR2067481
- [61] M. Van den Bergh – “Three-dimensional flops and noncommutative rings”, Duke Math. J.122 (2004), p. 423–455. Zbl1074.14013MR2057015
- [62] J. Wierzba – “Birational geometry of symplectic 4-folds”, preprint, http://www.dpmms.cam.ac.uk/~jw227/publications.html.
- [63] J. Wierzba & J.A. Wiśniewski – “Small contractions of symplectic 4-folds”, Duke Math. J.120 (2003), p. 65–95. Zbl1036.14007MR2010734